To content
A02

Space-time in high dimensions

A02 addresses problems of high-dimensionality and dimension reduction. It concentrates on a flexible framework for vector autoregressive (panel) models and models spatio-temporal extremes to analyze rare events. In the long term, a framework for high-dimensional space-time data analysis is developed that is equipped with thorough statistical theory and meets practical challenges, such as implementations and tuning parameter calibration.

Project Leaders

Prof. Dr. Axel Bücher
Faculty of Mathematics - Chair of Mathematical Statistics
Ruhr University Bochum

Prof. Dr. Andreas Groll
Department of Statistics - Chair of Statistical Methods for Big Data
TU Dortmund University

Prof. Dr. Johannes Lederer
Department of Mathematics - Chair of Mathematics of Data-Driven Methods
University of Hamburg

Summary

When analyzing spatio-temporal data in high dimensions, one usually pursues one of the following two general statistical goals: either the (dynamic behavior of the) center of each associated distribution is of greatest interest, or it is the extreme values which rarely occur but can have drastic consequences. The two goals require different statistical tools, which is reflected in the project's research agenda: the focus is both on autoregressive (VAR) models and panel data setups to analyze typical behavior, and on the analysis of spatio-temporal extremes to analyze rare events. The former is challenging because the number of parameters is often very large, in particular in the case of VAR models with additional exogenous variables (VARX). The latter is challenging because the focus on extremes usually leads to comparably small sample sizes.

We aim to devise new estimators that account for high-dimensionality, provide a feasible implementation, equip the estimators with statistical guarantees and test them in simulations and on empirical data. A key technique in our research is regularization, which deals with high-dimensionality by complementing classical objective functions with additional terms that formalize prior information about the data or setting. A by now standard type of prior information, called sparsity, is that only a small number of predictors should have a relevant effect. But many applications require more complex prior information: in VARX models, for example, exogenous predictors that are close in space can behave similarly ("fusion sparsity") or form functional groups ("group sparsity"), and the connectivities across time can also depend on the exogenous predictors ("lag selection"). In extremes, similar phenomena may occur for marginal extreme value models at different locations, and certain conditional independence relations have recently been connected to sparse graphical models for extremes. Such complex types of sparsity are called "structured sparsity" and will be the main focus of our work. The inclusion of structured sparsity will lead to more efficient estimation and more accurate prediction in the space-time applications of TRR 391 and beyond.

Akaike, H. (1973). Information Theory and the Extension of the Maximum Likelihood Principle. Second International Symposium on Information Theory, 267–281. doi: 10.1007/978-1-4612-0919-5_38.

Bańbura, M., D. Giannone, and L. Reichlin (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics 25, 71–92. doi: 10.1002/jae.1137.

Basu, S. and G. Michailidis (2015). Regularized estimation in sparse high-dimensional time series models. The Annals of Statistics 43. doi: 10.1214/15-AOS1315.

Beirlant, J., Y. Goegebeur, J. Teugels, and J. Segers (2004). Statistics of extremes. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester. doi: 10.1002/0470012382.

Birr, S., S. Volgushev, T. Kley, H. Dette, et al. (2017). Quantile Spectral Analysis for Locally Stationary Time Series. Journal of the Royal Statistical Society Series B: Statistical Methodology 79, 1619–1643. doi: 10.1111/rssb.12231.

Bücher, A. and H. Dette (2013). Multiplier bootstrap of tail copulas with applications. Bernoulli 19, 1655–1687. doi: 10.3150/12-BEJ425.

Bücher, A., C. Genest, R. A. Lockhart, and J. G. Nešlehová (2023). Asymptotic behavior of an intrinsic rank-based estimator of the Pickands dependence function constructed from B-splines. Extremes 26, 101–138. doi: 10.1007/s10687-022-00451-9.

Bücher, A. and T. Jennessen (2024). Statistics for heteroscedastic time series extremes. Bernoulli 30 (1) 46 – 71. doi: 10.3150/22-BEJ1560

Bücher, A., J. Lilienthal, P. Kinsvater, and R. Fried (2021). Penalized quasi-maximum likelihood estimation for extreme value models with application to flood frequency analysis. Extremes 24, 325–348. doi: 10.1007/s10687-020-00379-y.

Bücher, A., J. Segers, and S. Volgushev (2014). When uniform weak convergence fails: empirical processes for dependence functions and residuals via epi- and hypographs. The Annals of Statistics 42, 1598–1634. doi: 10.1214/14-AOS1237.

Bücher, A. and C. Zhou (2021). A horse race between the block maxima method and the peak-over-threshold approach. Statistical Science. A Review Journal of the Institute of Mathematical Statistics 36, 360–378. doi: 10.1214/20-STS795.

Chernozhukov, V., W. Karl Härdle, C. Huang, and W. Wang (2021). LASSO-driven inference in time and space. The Annals of Statistics 49. doi: 10.1214/20-AOS2019.

Chiapino, M. and A. Sabourin (2017). Feature Clustering for Extreme Events Analysis, with Application to Extreme Stream-Flow Data. New Frontiers in Mining Complex Patterns. Ed. by A. Appice, M. Ceci, C. Loglisci, E. Masciari, et al. Cham: Springer International Publishing, 132–147. doi: 10.1007/978-3-319-61461-8_9.

Chiapino, M., A. Sabourin, and J. Segers (2019). Identifying groups of variables with the potential of being large simultaneously. Extremes 22, 193–222. doi: 10.1007/s10687-018-0339-3.

Chichignoud, M., J. Lederer, and M. J. Wainwright (2016). A practical scheme and fast algorithm to tune the lasso with optimality guarantees. The Journal of Machine Learning Research 17, 8162–8181.

Clémençon, S., H. Jalalzai, S. Lhaut, A. Sabourin, et al. (2022). Concentration bounds for the empirical angular measure with statistical learning applications. doi: 10.3150/22-bej1562.

Coles, S. G. and M. J. Dixon (1999). Likelihood-Based Inference for Extreme Value Models. Extremes 2, 5–23. doi: 10.1023/A:1009905222644.

Cooley, D. and E. Thibaud (2019). Decompositions of dependence for high-dimensional extremes. Biometrika 106, 587–604. doi: 10.1093/biomet/asz028.

Dalalyan, A. S., M. Hebiri, and J. Lederer (2017). On the prediction performance of the Lasso. Bernoulli 23. doi: 10.3150/15-BEJ756.

Davis, R. A., P. Zang, and T. Zheng (2016). Sparse Vector Autoregressive Modeling. Journal of Computational and Graphical Statistics 25, 1077–1096. doi: 10.1080/10618600.2015.1092978.

Davison, A. C., S. A. Padoan, and M. Ribatet (2012). Statistical modeling of spatial extremes. Statistical Science. A Review Journal of the Institute of Mathematical Statistics 27, 161–186. doi: 10.1214/11-STS376.

Davison, A. and R. Huser (2015). Statistics of Extremes. Annual Review of Statistics and Its Application 2, 203–235. doi: 10.1146/annurev-statistics-010814-020133.

Drees, H. (2015). Bootstrapping empirical processes of cluster functionals with application to extremograms. ArXiv: 1511.00420.

Drees, H. (2023). Statistical Inference on a Changing Extremal Dependence Structure. arXiv: 2201.06389.

Drees, H. and H. Rootzén (2010). Limit theorems for empirical processes of cluster functionals. The Annals of Statistics 38, 2145–2186. doi: 10.1214/09-AOS788.

Eddelbuettel, D. (2013). Seamless R and C++ integration with Rcpp. doi: 10.1007/978-1-4614-6868-4.

Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. SIAM. doi: 10.1137/1.9781611970319.

Einmahl, J. H. J., L. de Haan, and C. Zhou (2016). Statistics of heteroscedastic extremes. Journal of the Royal Statistical Society. Series B. Statistical Methodology 78, 31–51. doi: 10.1111/rssb.12099.

Einmahl, J. H. J., A. Krajina, and J. Segers (2012). An M-estimator for tail dependence in arbitrary dimensions. The Annals of Statistics 40, 1764–1793. doi: 10.1214/12-AOS1023.

Engelke, S. and A. S. Hitz (2020). Graphical models for extremes. Journal of the Royal Statistical Society. Series B. Statistical Methodology 82, 871–932. doi: 10.1111/rssb.12355.

Engelke, S. and J. Ivanovs (2021). Sparse structures for multivariate extremes. Annual Review of Statistics and Its Application, 241–270. doi: 10.1146/annurev-statistics-040620-041554.

Engelke, S. and S. Volgushev (2022). Structure learning for extremal tree models. Journal of the Royal Statistical Society. Series B. Statistical Methodology 84, 2055–2087. doi: 10.1111/rssb.12556.

Gelper, S., I. Wilms, and C. Croux (2016). Identifying Demand Effects in a Large Network of Product Categories. Journal of Retailing 92, 25–39. doi: 10.1016/j.jretai.2015.05.005.

Gertheiss, J. and G. Tutz (2010). Sparse modeling of categorial explanatory variables. The Annals of Applied Statistics 4. doi: 10.1214/10-AOAS355.

Giraud, C. (2021). Introduction to high-dimensional statistics. CRC Press.

Gnecco, N., N. Meinshausen, J. Peters, and S. Engelke (2021). Causal discovery in heavy-tailed models. The Annals of Statistics 49, 1755–1778. doi: 10.1214/20-aos2021.

Goix, N., A. Sabourin, and S. Clémençon (2016). Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. Ed. by A. Gretton and C. C. Robert. Vol. 51. Proceedings of Machine Learning Research. Cadiz, Spain: PMLR, 75–83. url: https://proceedings.mlr.press/v51/goix16.html.

Goix, N., A. Sabourin, and S. Clémençon (2017). Sparse representation of multivariate extremes with applications to anomaly detection. Journal of Multivariate Analysis 161, 12–31. doi: 10.1016/j.jmva.2017.06.010.

Gold, D., J. Lederer, and J. Tao (2020). Inference for high-dimensional instrumental variables regression. Journal of Econometrics 217, 79–111. doi: 10.1016/j.jeconom.2019.09.009.

Greenshtein, E. and Y. Ritov (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10, 971–988. doi: 10.3150/bj/1106314846.

Groll, A. (2023). glmmLasso: Variable selection for generalized linear mixed models by L1-penalized estimation. url: http://CRAN.R-project.org/package=glmmLasso.

Groll, A. and G. Tutz (2012). Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting. Methods of Information in Medicine 51, 168–177. doi: 10.3414/ME11-02-0021.

Groll, A., J. Hambuckers, T. Kneib, and N. Umlauf (2019). LASSO-type penalization in the framework of generalized additive models for location, scale and shape. Computational Statistics & Data Analysis 140, 59–73. doi: 10.1016/j.csda.2019.06.005.

Groll, A., T. Hastie, and G. Tutz (2017). Selection of effects in Cox frailty models by regularization methods. Biometrics 73, 846–856. doi: 10.1111/biom.12637.

Groll, A. and G. Tutz (2014). Variable selection for generalized linear mixed models by L1-penalized estimation. Statistics and Computing 24, 137–154. doi: 10.1007/s11222-012-9359-z.

Hebiri, M. and J. C. Lederer (2012). How Correlations Influence Lasso Prediction. doi: 10.1109/tit.2012.2227680.

Hecq, A., M. Ternes, and I. Wilms (2022). Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions. Journal of Computational and Graphical Statistics 31, 1076–1090. doi: 10.1080/10618600.2022.2058003.

Hentschel, M., S. Engelke, and J. Segers (2022). Statistical Inference for Hüsler-Reiss Graphical Models Through Matrix Completions. doi: 10.1080/01621459.2024.2371978.

Huser, R. and J. L. Wadsworth (2022). Advances in statistical modeling of spatial extremes. Wiley Interdisciplinary Reviews. Computational Statistics (WIREs) 14. doi: 10.1002/wics.1537.

Jacob, L., G. Obozinski, and J.-P. Vert (2009). Group lasso with overlap and graph lasso. Proceedings of the 26th Annual International Conference on Machine Learning. Montreal Quebec Canada: ACM, 433–440. doi: 10.1145/1553374.1553431.

Krampe, J., J.-P. Kreiss, and E. Paparoditis (2021). Bootstrap based inference for sparse high-dimensional time series models. Bernoulli 27, 1441–1466. doi: 10.3150/20-BEJ1239.

Krampe, J. and E. Paparoditis (2021). Sparsity concepts and estimation procedures for high-dimensional vector autoregressive models. Journal of Time Series Analysis 42, 554–579. doi: 10.1111/jtsa.12586.

Lalancette, M., S. Engelke, and S. Volgushev (2021). Rank-based estimation under asymptotic dependence and independence, with applications to spatial extremes. The Annals of Statistics 49, 2552–2576. doi: 10.1214/20-aos2046.

Lederer, J. (2022). Fundamentals of high-dimensional statistics: With Exercises and R labs. Springer. doi: 10.1007/978-3-030-73792-4.

Lederer, J. and M. Oesting (2023). Extremes in High Dimensions: Methods and Scalable Algorithms. url: https://arxiv.org/abs/2303.04258

Lederer, J. and M. Vogt (2021). Estimating the Lasso’s effective noise. The Journal of Machine Learning Research 22, 12658–12689. doi: 10.5555/3546258.3546534.

Leeb, H. and B. M. Pötscher (2005). MODEL SELECTION AND INFERENCE: FACTS AND FICTION. Econometric Theory 21. doi: 10.1017/S0266466605050036.

Medeiros, M. C. and E. F. Mendes (2016). L1 -regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors. Journal of Econometrics 191, 255–271. doi: 10.1016/j.jeconom.2015.10.011.

Melnyk, I. and A. Banerjee (2016). Estimating structured vector autoregressive models. International Conference on Machine Learning. PMLR, 830–839.

Nicholson, W. B., I. Wilms, J. Bien, and D. S. Matteson (2020). High dimensional forecasting via interpretable vector autoregression. The Journal of Machine Learning Research 21.1, 6690–6741. url: http://jmlr.org/papers/v21/19-777.html.

Obozinski, G., L. Jacob, and J.-P. Vert (2011). Group Lasso with Overlaps: the Latent Group Lasso approach. url: http://arxiv.org/abs/1110.0413.

Oelker, M.-R. and G. Tutz (2017). A uniform framework for the combination of penalties in generalized structured models. Advances in Data Analysis and Classification 11, 97–120. doi: 10.1007/s11634-015-0205-y.

Röttger, F., S. Engelke, and P. Zwiernik (2023). Total positivity in multivariate extremes.

Sass, D., B. Li, and B. J. Reich (2021). Flexible and fast spatial return level estimation via a spatially fused penalty. Journal of Computational and Graphical Statistics 30, 1124–1142. doi: 10.1080/10618600.2021.1938584.

Schauberger, G., A. Groll, and G. Tutz (2018). Analysis of the importance of on-field covariates in the German Bundesliga. Journal of Applied Statistics 45, 1561–1578. doi: 10.1080/02664763.2017.1383370.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics 6, 461–464. doi: 10.1214/aos/1176344136.

Shao, X. (2010). A self-normalized approach to confidence interval construction in time series. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72, 343–366. doi: 10.1111/j.1467-9868.2009.00737.x.

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x.

Tibshirani, R., M. Saunders, S. Rosset, J. Zhu, et al. (2005). Sparsity and Smoothness Via the Fused Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 67, 91–108. doi: 10.1111/j.1467-9868.2005.00490.x.

Tsay, R. S. (2014). An introduction to analysis of financial data with R. John Wiley & Sons.

Van De Geer, S., P. Bühlmann, Y. Ritov, and R. Dezeure (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics 42. doi: 10.1214/14-AOS1221.

Van de Geer, S. A. and P. Bühlmann (2009). On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics 3, 1360–1392. doi: 10.1214/09-EJS506.

van der Wurp, H. and A. Groll (2023). Introducing LASSO-type penalisation to generalised joint regression modelling for count data. AStA Advances in Statistical Analysis 107, 127–151. doi: 10.1007/s10182-021-00425-5.

van der Wurp, H., A. Groll, T. Kneib, G. Marra, and R. Radice (2020). Generalised joint regression for count data: A penalty extension for competitive settings. Statistics and Computing 30, 1419–1432. doi: 10.1007/s11222-020-09953-7.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48. Cambridge University Press.

Wang, Z., A. Safikhani, Z. Zhu, and D. S. Matteson (2023). Regularized Estimation in High-Dimensional Vector Auto-Regressive Models Using Spatio-Temporal Information. Statistica Sinica. doi: 10.5705/ss.202020.0056.

Wilms, I., S. Basu, J. Bien, and D. S. Matteson (2017). Interpretable Vector AutoRegressions with Exogenous Time Series. url: http://arxiv.org/abs/1711.03623.

Wilms, I., S. Basu, J. Bien, and D. S. Matteson (2023). Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages. Journal of the American Statistical Association 118, 571–582. doi: 10.1080/01621459.2021.1942013.

Yuan, L., J. Liu, and J. Ye (2011). Efficient methods for overlapping group lasso. Advances in Neural Information Processing Systems 24. doi: 10.1109/tpami.2013.17.

Yuan, M. and Y. Lin (2006). Model Selection and Estimation in Regression with Grouped Variables. Journal of the Royal Statistical Society Series B: Statistical Methodology 68, 49–67. doi: 10.1111/j.1467-9868.2005.00532.x.

Zhang, C.-H. and S. S. Zhang (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society Series B: Statistical Methodology 76, 217–242. doi: 10.1111/rssb.12026.

Zou, N., S. Volgushev, and A. Bücher (2021). Multiple block sizes and overlapping blocks for multivariate time series extremes. The Annals of Statistics 49, 295–320. doi: 10.1214/20-AOS1957.