Resampling and model validation for spatio-temporal data
A03 employs complexity-reducing structural assumptions to construct resampling-based inference procedures and develops statistical tools to quantify deviations from such assumptions. A particular focus is on methods that allow to differentiate practically relevant and non-relevant deviations from simplifying assumptions such as, e.g., separability or low-rank approximations. In the long term, this project investigates resampling and model validation for multi-resolution approximations, high-dimensional modeling, and statistical inference for complex non-stationary spatio-temporal data.
Project Leaders
Prof. Dr. Holger Dette
Faculty of Mathematics - Chair of Stochastics
Ruhr University Bochum
Prof. Dr. Carsten Jentsch
Department of Statistics - Chair of Business and Social Statistics
TU Dortmund University
Summary
In spatio-temporal data analysis structural assumptions on the covariance function, such as symmetry, (spatial) isotropy or various forms of separability are often imposed to improve estimation efficiency and to achieve computational benefits, such as reduced computation time and lower data storage requirements. They are rarely made because one believes these to hold exactly, but with the hope that the deviations from the postulated model are relatively small, such that the application of more efficient statistical inferential procedures tailored for the structural assumptions is possible. Therefore, in practice, one is generally confronted with the tradeoff of balancing a potentially larger bias because of overly restrictive model assumptions against a potentially smaller variance due to the additional structure imposed.
In this project, we make use of complexity-reducing structural model assumptions to develop new and more efficient resampling-based inference procedures for the analysis of spatio-temporal data. We will develop statistical methods to quantify deviations from such assumptions and construct suitable tests for model validation. In addition to methodology for exact hypotheses (e.g. exact separability of the covariance), we will also supply methodology that allows to quantify deviations and to differentiate between practically relevant and non-relevant deviations from the postulated model assumptions. In particular, we investigate the statistical properties of these methods, such as validity or consistency, from an asymptotic point of view considering different sampling schemes in space and time.
Besides commonly used structural assumptions imposed on the covariance function such as parametric models, symmetry, (spatial) isotropy, or various forms of separability, our focus is also on complexity-reducing approaches including sparsity, low rank methods, separable expansions for covariance estimation and also nonlinear methods.
Appel, M. and E. Pebesma (2020). Spatiotemporal multi-resolution approximations for analyzing global environmental data. Spatial Statistics 38, 100465. doi: 10.1016/j.spasta.2020.100465.
Aston, J. A. D., D. Pigoli, and S. Tavakoli (2017). Tests for separability in nonparametric covariance operators of random surfaces. The Annals of Statistics 45. doi: 10.1214/16-AOS1495.
Bagchi, P. and H. Dette (2019). A Test for Separability in Covariance Operators of Random Surfaces. doi: 10.1214/19-aos1888.
Bandyopadhyay, S. and S. N. Lahiri (2009). Asymptotic properties of discrete Fourier transforms for spatial data. Sankhya: The Indian Journal of Statistics, Series A 71, 221–259. url: http://www.jstor.org/stable/41336804.
Bandyopadhyay, S., C. Jentsch, and S. Subba Rao (2017). A spectral domain test for stationarity of spatio-temporal data. Journal of Time Series Analysis 38, 326–351. doi: 10.1111/jtsa.12222.
Bandyopadhyay, S., S. N. Lahiri, and D. J. Nordman (2015). A frequency domain empirical likelihood method for irregularly spaced spatial data. The Annals of Statistics 43, 519–545. doi: 10.1214/14-AOS1291.
Bandyopadhyay, S. and S. S. Rao (2017). A Test for Stationarity for Irregularly Spaced Spatial Data. Journal of the Royal Statistical Society Series B: Statistical Methodology 79, 95–123. doi: 10.1111/rssb.12161.
Berger, J. O. and M. Delampady (1987). Testing Precise Hypotheses. Statistical Science 2, 317–335. doi: 10.1214/ss/1177013238.
Berkes, I., L. Horváth, and G. Rice (2013). Weak invariance principles for sums of dependent random functions. Stochastic Processes and their Applications 123, 385–403. doi: 10.1016/j.spa.2012.10.003.
Bücher, A., H. Dette, and F. Heinrichs (2021). Are deviations in a gradually varying mean relevant? A testing approach based on sup-norm estimators. The Annals of Statistics 49, 3583–3617. doi: 10.1214/21-AOS2098.
Chen, R., H. Xiao, and D. Yang (2021a). Autoregressive models for matrix-valued time series. Journal of Econometrics 222, 539–560. doi: 10.1016/j.jeconom.2020.07.015.
Chen, W., M. Genton, and Y. Sun (2021b). Space-time covariance structures and models. Annual Review of Statistics and Its Application 8, 191–215. doi: 10.1146/annurev-statistics-042720-115603.
Constantinou, P. Kokoszka, and . Reimherr (2017). Testing separability of space-time functional processes. Biometrika. doi: 10.1093/biomet/asx013.
Cressie, N. and G. Johannesson (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, 209–226. doi: 10.1111/j.1467-9868.2007.00633.x.
Dette, H., G. Dierickx, and T. Kutta (2022). Quantifying deviations from separability in space-time functional processes. Bernoulli 28, 2909–2940. doi: 10.3150/21-BEJ1442.
Dette, H., K. Kokot, and A. Aue (2020a). Functional data analysis in the Banach space of continuous functions. The Annals of Statistics 48. doi: 10.1214/19-AOS1842.
Dette, H., K. Kokot, and S. Volgushev (2020b). Testing Relevant Hypotheses in Functional Time Series via Self-Normalization. Journal of the Royal Statistical Society Series B: Statistical Methodology 82, 629–660. doi: 10.1111/rssb.12370.
Dette, H., K. Möllenhoff, S. Volgushev, and F. Bretz (2018). Equivalence of regression curves. Journal of the American Statistical Association 113, 711–729. doi: 10.1080/01621459.2017.1281813.
Dette, H. and D. Wied (2015). Detecting relevant changes in time series models. Journal of the Royal Statistical Society Series B: Statistical Methodology 78, 371–394. doi: 10.1111/rssb.12121.
Dette, H. and W. Wu (2019). Detecting relevant changes in the mean of nonstationary processes‚ a mass excess approach. The Annals of Statistics 47, 3578–3608. doi: 10.1214/19-AOS1811.
Fogarty, C. B. and D. S. Small (2014). Equivalence testing for functional data with an application to comparing pulmonary function devices. The Annals of Applied Statistics 8, 2002–2026. doi: 10.1214/14-AOAS763.
Fuentes, M. (2006). Testing for separability of spatial-temporal covariance functions. Journal of Statistical Planning and Inference 136, 447–466. doi: 10.1016/j.jspi.2004.07.004.
Genton, M. G. (2007). Separable approximations of space-time covariance matrices. Environmetrics 18, 681–695. doi: 10.1002/env.854.
Gneiting, T., M. Genton, and P. Guttorp (2006). Geostatistical space-time models, stationarity, separability, and full symmetry. Monographs on Statistics and Applied Probability 107, 151–175. doi: 10.1201/9781420011050.
Hafner, C. M., O. B. Linton, and H. Tang (2020). Estimation of a multiplicative correlation structure in the large dimensional case. Journal of Econometrics 217, 431–470. doi: 10.1016/j.jeconom.2019.12.012.
Heaton, M. J., A. Datta, A. O. Finley, R. Furrer, et al. (2019). A Case Study Competition Among Methods for Analyzing Large Spatial Data. Journal of Agricultural, Biological and Environmental Statistics 24, 398–425. doi: 10.1007/s13253-018-00348-w.
Heinrichs, F. and H. Dette (2021). A distribution free test for changes in the trend function of locally stationary processes. Electronic Journal of Statistics, 3762–3797. doi: 10.1214/21-EJS1871.
Hsu, N.-J., H.-C. Huang, and R. S. Tsay (2021). Matrix autoregressive spatio-temporal models. Journal of Computational and Graphical Statistics 30, 1143–1155. doi: 10.1080/10618600.2021.1938587.
Jentsch, C. and M. Meyer (2021). On the validity of Akaike’s identity for random fields. Journal of Econometrics 222, 676–687. doi: 10.1016/j.jeconom.2020.04.044.
Jentsch, C. and D. N. Politis (2015). Covariance matrix estimation and linear process bootstrap for multivariate time series of possibly increasing dimension. The Annals of Statistics 43. doi: 10.1214/14-AOS1301.
Jentsch, C. and S. Subba Rao (2015). A test for second order stationarity of a multivariate time series. Journal of Econometrics 185, 124–161. doi: 10.1016/j.jeconom.2014.09.010.
Katzfuss, M. (2017). A multi-resolution approximation for massive spatial datasets. Journal of the American Statistical Association 112, 201–214. doi: 10.1080/01621459.2015.1123632.
Krampe, J. and T. L. McMurry (2021). Estimating wold matrices and vector moving average processes. Journal of Time Series Analysis 42, 201–221. doi: 10.1111/jtsa.12562.
Kurisu, D., K. Kato, and X. Shao (2023). Gaussian approximation and spatially dependent wild bootstrap for high-dimensional spatial data. Journal of the American Statistical Association, 1–21. doi: 10.1080/01621459.2023.2218578.
Lahiri, S. N. (2003). Central limit theorems for weighted sums of a spatial process under a Class of stochastic and fixed designs. Sankhya: The Indian Journal of Statistics (2003-2007) 65, 356–388. url: http://www.jstor.org/stable/25053269.
Liang, F., Y. Cheng, Q. Song, J. Park, et al. (2013). A Resampling-Based Stochastic Approximation Method for Analysis of Large Geostatistical Data. Journal of the American Statistical Association 108, 325–339. doi: 10.1080/01621459.2012.746061.
Lindgren, F., H. Rue, and J. Lindström (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society Series B 73, 423–498. doi: 10.1111/j.1467-9868.2011.00777.x.
Linton, O. B. and H. Tang (2022). Estimation of the Kronecker Covariance Model by Quadratic Form. Econometric Theory 38, 1014–1067. doi: 10.1017/S026646662000050X.
Lynch, B. and K. Chen (2018). A test of weak separability for multi-way functional data, with application to brain connectivity studies. Biometrika 105, 815–831. doi: 10.1093/biomet/asy048.
Masak, T., S. Sarkar, and V. Panaretos (2022). Separable expansions for covariance estimation via the partial inner product. Biometrika 110, 225–247. doi: 10.1093/biomet/asac035.
Matsuda, Y. and Y. Yajima (2009). Fourier analysis of irregularly spaced data on \mathbbR^d. Journal of the Royal Statistical Society Series B 71, 191–217. doi: 10.1111/j.1467-9868.2008.00685.x.
McMurry, T. L. and D. N. Politis (2010). Banded and tapered estimates for autocovariance matrices and the linear process bootstrap. Journal of Time Series Analysis 31, 471–482. doi: 10.1111/j.1467-9892.2010.00679.x.
Meyer, M., C. Jentsch, and J.-P. Kreiss (2017). Baxter’s inequality and sieve bootstrap for random fields. Bernoulli 23. doi: 10.3150/16-BEJ835.
Mitchell, M. W., M. G. Genton, and M. L. Gumpertz (2005). Testing for separability of space–time covariances. Environmetrics 16, 819–831. doi: 10.1002/env.737.
Ng, W. L., C. Y. Yau, and X. Chen (2021). Frequency domain bootstrap methods for random fields. Electronic Journal of Statistics 15, 6586–6632. doi: 10.1214/21-EJS1959.
Nordman, D. J., S. N. Lahiri, and B. L. Fridley (2007). Optimal block size for variance estimation by a spatial block bootstrap method. Sankhya: The Indian Journal of Statistics 69, 468–493. url: http://www.jstor.org/stable/25664573.
Politis, D. N., J. P. Romano, and M. Wolf (1999). Subsampling. New York, Springer. doi: 10.1007/978-1-4612-1554-7.
Porcu, E., R. Furrer, and D. Nychka (2021). 30 Years of space-time covariance functions. WIREs Computational Statistics 13. doi: 10.1002/wics.1512.
Reichold, K. and C. Jentsch (2023). Bootstrap inference in cointegrating regressions: Traditional and self-normalized test statistics. Journal of Business & Economic Statistics, 1–97. doi: 10.1080/07350015.2023.2271538.
Saha, A. and A. Datta (2018). BRISC: Bootstrap for rapid inference on spatial covariances. Stat 7. doi: 10.1002/sta4.184.
Shao, X. (2015). Self-Normalization for Time Series: A Review of Recent Developments. Journal of the American Statistical Association 110, 1797–1817. doi: 10.1080/01621459.2015.1050493.
Shao, X. and B. Li (2009). A tuning parameter free test for properties of space–time covariance functions. Journal of Statistical Planning and Inference 139, 4031–4038. doi: 10.1016/j.jspi.2009.05.008.
Sherman, M. (2011). Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties. Chichester, West Sussex, U.K: Wiley. doi: 10.1002/9780470974391.
Tukey, J. W. (1991). The philosophy of multiple comparisons. Statistical Science 6, 100–116. doi: 10.1214/ss/1177011945.
Van Loan, C. F. and N. Pitsianis (1993). Approximation with Kronecker Products. Linear Algebra for Large Scale and Real-Time Applications. Dordrecht: Springer Netherlands, 293–314. doi: 10.1007/978-94-015-8196-7_17.
Wellek, S. (2010). Testing Statistical Hypotheses of Equivalence and Noninferiority. CRC Press. doi: 10.1201/EBK1439808184.
Weller, Z. D. and J. A. Hoeting (2020). A nonparametric spectral domain test of spatial isotropy. Journal of Statistical Planning and Inference 204, 177–186. doi: 10.1016/j.jspi.2019.05.005.