Forecasting methods for spatio-temporal data: robust evaluation and inference
A06 develops forecasting methods and forecast evaluation tools with a focus on panel data with a particular emphasis on robustness. It will develop forecasting methods and tools for testing forecast rationality and forecasting superiority, which take the effects of parameter estimation into account. The long-term goal are inferential comparison tools for general classes of prediction methods for spatio-temporal data.
Project Leaders
Prof. Dr. Dr. Matei Demetrescu
Department of Statistics - Chair of Econometrics and Statistics
TU Dortmund University
Prof. Dr. Christoph Hanck
Faculty of Business and Economics - Chair of Econometrics
University of Duisburg-Essen
Summary
We develop forecasting tools able to cope with complex data structures that arise in panel data setups, in particular with any spatial relation between panel units. Moreover, for a given set of different, competing forecasting methods, we develop methodology that allows to test whether some method is superior to others as well as whether a given method makes rational use of available information.
We further consider functional time series models for cases where the data vary smoothly in a suitable spatial dimension. This includes both natural space for, e.g., energy production sites and "spaces" of forecasters relying on related and hence spatially dependent information sets. We explore the implications of such modeling for forecasting methods as well as assessment.
As robustness is required in virtually all leading applications, particular emphasis is placed on the development of procedures robust to nuisance features of the data. Along these lines, we provide forecasting methods that are robust to the effect of parameter estimation, as well as to data properties such as high, but unknown degrees of predictor persistence in time, dependence of unknown form across the spatial dimension, heteroskedasticity, coefficient heterogeneity across the panel as well as coefficient instability across time, and time-varying variances. To this end, we make use of suitable resampling, instrumental variables, local volatility estimation and shrinkage techniques.
An important aspect that will be addressed throughout this project is to explore such features for the improvement of efficiency of the methods relative to benchmark approaches.
Akgun, O., A. Pirotte, G. Urga, and Z. Yang (2023). Equal predictive ability tests based on panel data with applications to OECD and IMF forecasts. International Journal of Forecasting. doi: 10.1016/j.ijforecast.2023.02.001.
Amado, C. and T. Teräsvirta (2013). Modelling volatility by variance decomposition. Journal of Econometrics 175, 142–153. doi: 10.1016/j.jeconom.2013.03.006.
Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817–858. doi: 10.2307/2938229.
Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Springer. doi: 10.1007/978-94-015-7799-1.
Astill, S., D. I. Harvey, S. J. Leybourne, and A. M. R. Taylor (2023). Bonferroni Type Tests for Return Predictability and the Initial Condition. Journal of Business & Economic Statistics. doi: 10.1080/07350015.2023.2201313.
Aue, A., D. D. Norinho, and S. Hörmann (2015). On the Prediction of Stationary Functional Time Series. Journal of the American Statistical Association 110, 378–392. doi: 10.1080/01621459.2014.909317.
Bai, J. (2003). Inferential Theory for Factor Models of Large Dimensions. Econometrica 71, 135–171. doi: 10.1111/1468-0262.00392.
Bai, J., B. Baltagi, and H. Pesaran (2016). Cross-Sectional Dependence in Panel Data Models: A Special Issue. Journal of Applied Econometrics 31, 1–3. doi: 10.1002/jae.2507.
Bailey, N., G. Kapetanios, and M. H. Pesaran (2016). Exponent of Cross-Sectional Dependence: Estimation and Inference. Journal of Applied Econometrics 31, 929–960. doi: 10.1002/jae.2476.
Baltagi, B. H. (2013). Panel Data Forecasting. Handbook of Economic Forecasting 2, 995–1024. doi: 10.1016/B978-0-444-62731-5.00018-X.
Besse, P. C., H. Cardot, and D. B. Stephenson (2000). Autoregressive forecasting of some functional climatic variations. Scandinavian Journal of Statistics 27, 673–687. doi: 10.1111/1467-9469.00215.
Breitung, J. and M. Demetrescu (2015). Instrumental variable and variable addition based inference in predictive regressions. Journal of Econometrics 187, 358–375. doi: 10.1016/j.jeconom.2013.10.018.
Breitung, J. and S. Eickmeier (2016). Analyzing international business and financial cycles using multi-level factor models: A comparison of alternative approaches. Advances in Econometrics. Vol. 35. Emerald Group Publishing Limited, 177–214. doi: 10.1108/S0731-905320150000035005.
Bücher, A., H. Dette, and F. Heinrichs (2021). Are deviations in a gradually varying mean relevant? A testing approach based on sup-norm estimators. The Annals of Statistics 49, 3583–3617. doi: 10.1214/21-AOS2098.
Campbell, J. Y. and M. Yogo (2006). Efficient tests of stock return predictability. Journal of Financial Economics 81, 27–60. doi: 10.1016/j.jfineco.2005.05.008.
Carrasco, M. and B. Rossi (2016). In-Sample Inference and Forecasting in Misspecified Factor Models. Journal of Business & Economic Statistics 34, 313–338. doi: 10.1080/07350015.2016.1186029.
Cavaliere, G. and A. M. R. Taylor (2008). Bootstrap Unit Root Tests for Time Series with Nonstationary Volatility. Econometric Theory 24, 43–71. doi: 10.1017/S0266466608080043.
Chang, Y. (2002). Nonlinear IV Unit Root Tests in Panels with Cross-Sectional Dependency. Journal of Econometrics 110, 261–292. doi: 10.1016/S0304-4076(02)00095-7.
Chudik, A. and H. Pesaran (2015). Large Panel Data Models with Cross-Sectional Dependence: A Survey. The Oxford Handbook of Panel Data. Oxford University Press. doi: 10.1093/oxfordhb/9780199940042.013.0001.
Conley, T. G., S. Gonçalves, M. S. Kim, and B. Perron (2023). Bootstrap inference under cross-sectional dependence. Quantitative Economics 14, 511–569. doi: 10.3982/QE1626.
Croushore, D. (1993). Introducing: the survey of professional forecasters. Business Review-Federal Reserve Bank of Philadelphia 6, 3–15.
Demetrescu, M. (2010). On the Dickey-Fuller test with White standard errors. Statistical Papers 51, 11–25. doi: 10.1007/s00362-007-0112-1.
Demetrescu, M., I. Georgiev, P. M. M. Rodrigues, and A. M. R. Taylor (2023a). Extensions to IVX methods of inference for return predictability. Journal of Econometrics 237, 105271. doi: 10.1016/j.jeconom.2022.02.007.
Demetrescu, M., I. Georgiev, P. M. Rodrigues, and A. R. Taylor (2022a). Testing for episodic predictability in stock returns. Journal of Econometrics 227, 85–113. doi: 10.1016/j.jeconom.2020.01.001.
Demetrescu, M. and C. Hanck (2012a). A simple nonstationary-volatility robust panel unit root test. Economics Letters 117, 10–13. doi: 10.1016/j.econlet.2012.04.067.
Demetrescu, M. and C. Hanck (2012b). Unit Root Testing in Heteroscedastic Panels Using the Cauchy Estimator. Journal of Business & Economic Statistics 30, 256–264. doi: 10.1080/07350015.2011.638839.
Demetrescu, M. and C. Hanck (2013). Nonlinear IV Panel Unit Root Testing under Structural Breaks in the Error Variance. Statistical Papers 54, 1043–1066. doi: 10.1007/s00362-013-0502-5.
Demetrescu, M. and C. Hanck (2016). Robust Inference for Near-Unit Root Processes with Time-Varying Error Variances. Econometric Reviews 35, 751–781. doi: 10.1080/07474938.2014.976525.
Demetrescu, M. and C. Hanck (2018). Multiple Testing for No Cointegration under Nonstationary Volatility. Oxford Bulletin of Economics and Statistics 80, 485–513. doi: 10.1111/obes.12214.
Demetrescu, M., C. Hanck, and R. Kruse-Becher (2023b). Robust Fixed- b Inference in the Presence of Time-Varying Volatility. Econometrics and Statistics, S2452306223000357. doi: 10.1016/j.ecosta.2023.05.003.
Demetrescu, M., C. Hanck, and R. Kruse-Becher (2022b). Robust inference under time-varying volatility: A real-time evaluation of professional forecasters. Journal of Applied Econometrics 37, 1010–1030. doi: 10.1002/jae.2906.
Demetrescu, M., C. Hanck, and A. I. Tarcolea (2014). IV-Based Cointegration Testing in Dependent Panels with Time-Varying Variance. Journal of Time Series Analysis 35, 393–406. doi: 10.1111/jtsa.12071.
Demetrescu, M. and P. M. Rodrigues (2022). Residual-augmented IVX predictive regression. Journal of Econometrics 227, 429–460. doi: 10.1016/j.jeconom.2020.11.007.
Diebold, F. X. and R. S. Mariano (1995). Comparing Predictive Accuracy. Journal of Business & Economic Statistics 13, 253–263. doi: 10.1198/073500102753410444.
Dorn, M., M. Birke, and C. Jentsch (2022). Testing exogeneity in the functional linear regression model. url: http://arxiv.org/abs/2208.06842.
Elías, A., R. Jiménez, and H. L. Shang (2022). On projection methods for functional time series forecasting. Journal of Multivariate Analysis 189, 104890. doi: 10.1016/j.jmva.2021.104890.
Elliott, G., I. Komunjer, and A. Timmermann (2005). Estimation and Testing of Forecast Rationality under Flexible Loss. Review of Economic Studies 72, 1107–1125. doi: 10.1111/0034-6527.00363.
Elliott, G. and J. H. Stock (1994). Inference in time series regression when the order of integration of a regressor is unknown. Econometric Theory 10, 672–700. doi: 10.1017/S0266466600008720.
Farmer, L. E., L. Schmidt, and A. Timmermann (2023). Pockets of Predictability. The Journal of Finance 78, 1279–1341. doi: 10.1111/jofi.13229.
Giacomini, R. and H. White (2006). Tests of conditional predictive ability. Econometrica 74, 1545–1578. doi: 10.1111/j.1468-0262.2006.00718.x.
Gonzalo, J. and J.-Y. Pitarakis (2023). Out-of-sample predictability in predictive regressions with many predictor candidates. International Journal of Forecasting, S0169207023001048. doi: 10.1016/j.ijforecast.2023.10.005.
Hallin, M., S. Hörmann, and M. Lippi (2018). Optimal dimension reduction for high-dimensional and functional time series. Statistical Inference for Stochastic Processes 21, 385–398. doi: 10.1007/s11203-018-9172-1.
Hanck, C. (2013). An Intersection Test for Panel Unit Roots. Econometric Reviews 32, 183–203. doi: 10.1080/07474938.2011.608058.
Hanck, C. and T. Massing (2021). Testing for Nonlinear Cointegration under Heteroskedasticity. url: http://arxiv.org/abs/2102.08809.
Hendry, D. F. and M. P. Clements (2004). Pooling of forecasts. Econometrics Journal 7, 1–31. doi: 10.1111/j.1368-423x.2004.00119.x.
Hörmann, S., L. Kidzinski, and M. Hallin (2014). Dynamic functional principal components. Journal of the Royal Statistical Society Series B: Statistical Methodology 77, 319–348. doi: 10.1111/rssb.12076.
Horváth, L., P. Kokoszka, and G. Rice (2014). Testing stationarity of functional time series. Journal of Econometrics 179, 66–82. doi: 10.1016/j.jeconom.2013.11.002.
Hsiao, C. (2014). Analysis of Panel Data. 3rd ed. Econometric Society Monographs. Cambridge University Press. doi: 10.1017/CBO9781139839327.
Hyndman, R. J. and H. L. Shang (2009). Forecasting functional time series. Journal of the Korean Statistical Society 38, 199–211. doi: 10.1016/j.jkss.2009.06.002.
Issler, J. V. and L. R. Lima (2009). A panel data approach to economic forecasting: The bias-corrected average forecast. Journal of Econometrics 152, 153–164. doi: 10.1016/j.jeconom.2009.01.002.
Keane, M. P. and D. E. Runkle (1990). Testing the Rationality of Price Forecasts: New Evidence from Panel Data. The American Economic Review 80.4, 714–735. url: http://www.jstor.org/stable/2006704.
Kiefer, N. M. and T. J. Vogelsang (2005). A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econometric Theory 21, 1130–1164. doi: 10.1017/S0266466605050565.
Kiviet, J. F. and Q. Feng (2016). Efficiency Gains by Modifying GMM Estimation in Linear Models under Heteroskedasticity. UVA Discussion Paper. Universiteit van Amsterdam. url: https://hdl.handle.net/11245/1.433465.
Kostakis, A., T. Magdalinos, and M. P. Stamatogiannis (2015). Robust Econometric Inference for Stock Return Predictability. Review of Financial Studies 28, 1506–1553. doi: 10.1093/rfs/hhu139.
Kreiss, J.-P. and E. Paparoditis (2012). The Hybrid Wild Bootstrap for Time Series. Journal of the American Statistical Association 107, 1073–1084. doi: 10.1080/01621459.2012.695664.
Kutta, T. and H. Dette (2022). Validating Approximate Slope Homogeneity in Large Panels. url: http://arxiv.org/abs/2205.02197.
Lahiri, K., H. Peng, and X. S. Sheng (2022). Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity. Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, 29–50. doi: 10.1108/s0731-90532021000043a003.
Liu, L., H. R. Moon, and F. Schorfheide (2020). Forecasting with dynamic panel data models. Econometrica 88, 171–201. doi: 10.3982/ECTA14952.
Medeiros, M. C., G. F. R. Vasconcelos, Á. Veiga, and E. Zilberman (2021). Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods. Journal of Business & Economic Statistics 39, 98–119. doi: 10.1080/07350015.2019.1637745.
Mincer, J. A. and V. Zarnowitz (1969). The Evaluation of Economic Forecasts. Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance. NBER, 3–46. url: http://www.nber.org/chapters/c1214.
Müller, U. K. and M. W. Watson (2023). Spatial Unit Roots. url: https://www.princeton.edu/~umueller/SPUR.pdf.
Nagy, A. M. and V. Simon (2018). Survey on traffic prediction in smart cities. Pervasive and Mobile Computing 50, 148–163. doi: 10.1016/j.pmcj.2018.07.004.
Ng, S. (2013). Variable Selection in Predictive Regressions. Handbook of Economic Forecasting 2, 752–789. doi: 10.1016/B978-0-444-62731-5.00014-2.
Otto, S. and N. Salish (2022). Approximate Factor Models for Functional Time Series. url: http://arxiv.org/abs/2201.02532.
Pesaran, M. H. (2006). Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure. Econometrica 74, 967–1012. doi: 10.1111/j.1468-0262.2006.00692.x.
Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics 22, 265–312. doi: 10.1002/jae.951.
Pesaran, M. H., A. Pick, and A. Timmermann (2022). Forecasting with Panel Data: Estimation Uncertainty Versus Parameter Heterogeneity. SSRN Electronic Journal. doi: 10.2139/ssrn.4083587.
Pesaran, M. H., A. Pick, and A. Timmermann (2022). Forecasting with panel data: Estimation uncertainty versus parameter heterogeneity. CEPR Discussion Paper No. DP17123. Centre for Economic Policy Research. url: https://ideas.repec.org/p/cam/camdae/2219.html.
Phillips, P. C. (2015). Halbert White Jr. memorial JFEC lecture: Pitfalls and possibilities in predictive regression. Journal of Financial Econometrics 13, 521–555. doi: 10.1093/jjfinec/nbv014.
Pitarakis, J.-Y. (2023). A Novel Approach to Predictive Accuracy Testing in Nested Environments. Econometric Theory, 1–44. doi: 10.1017/S0266466623000154.
Pyun, S. (2019). Variance risk in aggregate stock returns and time-varying return predictability. Journal of Financial Economics 132, 150–174. doi: 10.1016/j.jfineco.2018.10.002.
Qu, R., A. Timmermann, and Y. Zhu (2023). Comparing forecasting performance with panel data. International Journal of Forecasting. doi: 10.1016/j.ijforecast.2023.08.001.
Reichold, K. and C. Jentsch (2023). Bootstrap inference in cointegrating regressions: Traditional and self-normalized test statistics. Journal of Business & Economic Statistics, 1–97. doi: 10.1080/07350015.2023.2271538.
Rossi, B. and T. Sekhposyan (2016). Forecast rationality tests in the presence of instabilities, with applications to Federal Reserve and survey forecasts. Journal of Applied Econometrics 31, 507–532. doi: 10.1002/jae.2440.
Shin, D. W. and S. Kang (2006). An Instrumental Variable Approach for Panel Unit Root Tests under Cross-Sectional Dependence. Journal of Econometrics 134, 215–234. doi: 10.1016/j.jeconom.2005.06.021.
Stambaugh, R. F. (1999). Predictive regressions. Journal of Financial Economics 54, 375–421. doi: 10.1016/S0304-405X(99)00041-0.
Stock, J. H. and M. W. Watson (2002). Has the Business Cycle Changed and Why? NBER Macroeconomics Annual 17, 159–218. doi: 10.3386/w9127.
Stock, J. H. and M. W. Watson (2009). Forecasting in Dynamic Factor Models Subject to Structural Instability. The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry. doi: 10.1093/acprof:oso/9780199237197.003.0007.
Timmermann, A. and Y. Zhu (2019). Comparing forecasting performance with panel data. CEPR Discussion Paper DP13746. url: https://cepr.org/publications/dp13746.
Vogt, M. and H. Dette (2015). Detecting gradual changes in locally stationary processes. The Annals of Statistics 43, 713–740. doi: 10.1214/14-AOS1297.
Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies 21, 1455–1508. doi: 10.1093/rfs/hhm014.
West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica 64, 1067–1084. doi: 10.2307/2171956.
Westerlund, J., H. Karabiyik, and P. Narayan (2017). Testing for Predictability in panels with General Predictors. Journal of Applied Econometrics 32, 554–574. doi: 10.1002/jae.2535.
White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 48, 817–838. doi: 10.2307/1912934.
Yang, K. and L.-F. Lee (2021). Estimation of dynamic panel spatial vector autoregression: Stability and spatial multivariate cointegration. Journal of Econometrics 221, 337–367. doi: 10.1016/j.jeconom.2020.05.010.
Zhou, Z. and H. Dette (2023). Statistical inference for high-dimensional panel functional time series. Journal of the Royal Statistical Society Series B: Statistical Methodology 85, 523–549. doi: 10.1093/jrsssb/qkad015.
Ziel, F., C. Croonenbroeck, and D. Ambach (2016). Forecasting wind power — Modeling periodic and non-linear effects under conditional heteroscedasticity. Applied Energy 177, 285–297. doi: 10.1016/j.apenergy.2016.05.111.