To content
B01

Statistical modeling and analysis for state estimation in electrical power distribution grids

B01 addresses statistical challenges caused by the integration of renewable energies and the dismantling of conventional power plants with simultaneous electrification of heating and transport sectors. It develops methods for data acquisition and monitoring to design smart distribution grids. In the long run, new experimental designs for nonlinear state space models and new monitoring procedures will be developed for the optimal resilient and robust operation of electrical power distribution grids.

Project Leaders

Prof. Dr. Christine Müller
Department of Statistics -Chair of Statistics with Applications in Engineering Sciences
TU Dortmund University

Prof. Dr.-Ing. Christian Rehtanz
Department of Electrical Engineering and Information Technology - Institute of Energy Systems, Energy Efficiency and Energy Economics
TU Dortmund University

Summary

Integrating renewable energy conversion systems and dismantling conventional power plants, while simultaneously electrifying the heating and transport sectors, creates new challenges in the planning and operation of electrical power distribution grids. A key functionality for efficient grid operation and usage is the estimation and prediction of the operational states in terms of voltages and power flows.

Classical state estimation techniques currently in use estimate the state variables at a single point in time. This is achieved by utilizing a sufficiently large number of measurements of spatially distributed sensors, which are time-synchronized within certain limits, and assuming a steady-state behavior of the measured values in a specific time interval of several seconds. However, in distribution grids, the number of spatially distributed sensors is significantly lower in comparison to transmission grids, where state estimation are ubiquitous in use. The measurements on distribution level have typically a lower temporal resolution and the steady-state assumption significantly reduces accuracy due to the high volatility of loads and feed-ins. Additionally, due to the limited number of measurements at sensors, less accurate pseudo-measurement values must be incorporated to achieve observability. Such pseudo-measurements are values derived from secondary data replacing a missing measurement. They are for instance obtained from weather reports to get the electrical input of wind power plants or photovoltaic systems, which might not be measured directly.

The first objective of this project is to design new methods which incorporate the temporal evolution of measured values and the formation of pseudo-measured values, as well as the spatial distribution of measurements, including correlations, into the estimation process. We will achieve this goal by determining important input variables, employing realistic model assumptions, and developing appropriate filtering methods. Specifically, we will relax the common normality assumption, which is unrealistic for electrical power distribution grids. This will lead us to new statistical approaches for the nonlinear state space models typically used in distribution grids, enabling robust estimation under highly volatile conditions.

Furthermore, on the distribution grid level, we need to ensure that voltage or power flows are kept within defined values with a specific confidence level for specific future time intervals. Therefore, our second goal is to determine the prediction intervals (confidence intervals) for the predicted (estimated) future values over a short time interval (e.g., 15 minutes) and to develop online change-point methods for detecting critical situations where the voltage or power flow will exceed critical values in the upcoming time interval. Expanding this time interval from short-term to daily operation is the long-term goal of the project.

To guarantee the required accuracy and probability, an optimal mix of sensors and different types of pseudo-measurements needs to be determined, and we will identify the minimum number of sensor measurements and their placement in medium and low-voltage networks.  Additionally, we will determine optimal estimation intervals for the required accuracy. In a further step, the topology of the underlying grid model will be validated. Changes in the grid topology lead to modeling errors, which provide significant practical problems in today's analysis of distribution grids. To address these issues, we will develop new online change-point methods for detecting changes in the network topology that were not communicated to the network operator in a timely manner.

Abbas, S., R. Fried, J. Heinrich, M. Horn, et al. (2019). Detection of anomalous sequences in crack data of a bridge monitoring. Applications in Statistical Computing — From Music Data Analysis to Industrial Quality Improvement. Eds. K. Ickstadt, H. Trautmann, G. Szepannek, N. Bauer, K. Lübke, M. Vichi. Springer, 251–269. doi: 10.1007/978-3-030-25147-5_16.

Abur, A. and A. Gomez-Exposito (2004). Power System State Estimation: Theory and Implementation. Marcel Dekker, New York. doi: 10.1201/9780203913673.

Adler, D. and D. Murdoch (2020). rgl: 3D Visualization Using OpenGL. url: https://CRAN.R-project.org/package=rgl.

Afshar, S., K. Morris, and A. Khajepour (2019). A modified sliding-mode observer design with application to diffusion equation. International Journal of Control 92, 2369–2382. doi: 10.1080/00207179.2018.1438668.

Agostinelli, C. and M. Romanazzi (2011). Local depth. Journal of Statistical Planning and Inference 141, 817–830. doi: 10.1016/j.jspi.2010.08.001.

Alexanderian, A. (2021). Optimal experimental design for infinite-dimensional Bayesian inverse problems governed by PDEs: A review. Inverse Problems 37, 043001. doi: 10.1088/1361-6420/abe10c.

Applegate, D., R. Bixby, V. Chvátal, and W. Cook (2004). Concorde TSP Solver. url: www.tsp.gatech.edu.

Applegate, D., R. Bixby, V. Chvátal, and W. Cook (2006). The Traveling Salesman Problem. Applied Mathematics. Princton University Press.

Arcones, M. A. and E. Gine (1993). Limit Theorems for U-Processes. The Annals of Probability 21, 1494–1542. doi: 10.1214/aop/1176989128.

Azhdari, A. and M. A. Ardakan (2022). Reliability optimization of multi-state networks in a star configuration with bi-level performance sharing mechanism and transmission losses. Reliability Engineering & System Safety 226, 108556. doi: 10.1016/j.ress.2022.108556.

Balduin, S., E. M. Veith, A. Berezin, S. Lehnhoff, et al. (2021). Towards a universally applicable neural state estimation through transfer learning. 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 1–6. doi: 10.1109/ISGTEurope52324.2021.9639919.

Binder, N., H. Dette, J. Franz, D. Zöller, et al. (2022a). Data Mining in Urology: Understanding Real-world Treatment Pathways for Lower Urinary Tract Systems via Exploration of Big Data. European urology focus. doi: 10.1016/j.euf.2022.03.019.

Binder, N., T. A. Gerds, and P. K. Andersen (2014). Pseudo-observations for competing risks with covariate dependent censoring. Lifetime data analysis 20, 303–315. doi: 10.1007/s10985-013-9247-7.

Binder, N., A.-S. Herrnböck, and M. Schumacher (2017). Estimating hazard ratios in cohort data with missing disease information due to death. Biometrical Journal 59, 251–269. doi: 10.1002/bimj.201500167.

Binder, N., K. Möllenhoff, A. Sigle, and H. Dette (2022b). Similarity of competing risks models with constant intensities in an application to clinical healthcare pathways involving prostate cancer surgery. Statistics in Medicine 41, 3804–3819. doi: 10.1002/sim.9481.

Bretz, F., K. Möllenhoff, H. Dette, W. Liu, et al. (2018). Assessing the similarity of dose response and target doses in two non-overlapping subgroups. Statistics in Medicine 37, 722–738. doi: 10.1002/sim.7546.

Brodsky, B. (2012). Sequential change-point detection in state-space models. Sequential Analysis 31, 145–171. doi: 10.1080/07474946.2012.665676.

Brüggemann, A., K. Görner, and C. Rehtanz (2017). Evaluation of extended Kalman filter and particle filter approaches for quasi-dynamic distribution system state estimation. CIRED - Open Access Proceedings Journal 2017, 1755–1758. doi: 10.1049/oap-cired.2017.0984.

Brüggemann, A., C. Rehtanz, and T. Noll (2019). Analysis of State Uncertainty for Distribution System State Estimation. 2019 IEEE Milan PowerTech. Milan, Italy: IEEE, 1–6. doi: 10.1109/PTC.2019.8810800.

Brüning Ascari, L. and A. Somoes Costa (2023). A bad data resilient multisensor fusion framework for hybrid state estimation. IEEE Powertech 2023. doi: 10.1109/TPWRS.2023.3261201.

Büning, H. and G. Trenkler (1994). Nichtparametrische statistische Methoden. 2nd ed. Berlin: de Gruyter.

Calvet, L. E., V. Czellar, and E. Ronchetti (2015). Robust Filtering. Journal of the American Statistical Association 110, 1591–1606. doi: 10.1080/01621459.2014.983520.

Cao, M., J. Guo, H. Xiao, and L. Wu (2022). Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system. Reliability Engineering & System Safety 222, 108443. doi: 10.1016/j.ress.2022.108443.

Cipra, T. and R. Romera (1997). Kalman filter with outliers and missing observations. TEST: An Official Journal of the Spanish Society of Statistics and Operations Research 6, 379–395. doi: 10.1007/BF02564705.

Claeskens, G., M. Hubert, L. Slaets, and K. Vakili (2014). Multivariate functional halfspace depth. Journal of the American Statistical Association 109, 411–423. doi: 10.2139/ssrn.2244934.

Creal, D. D. and R. S. Tsay (2015). High dimensional dynamic stochastic copula models. Journal of Econometrics 189, 335–345. doi: 10.1016/j.jeconom.2015.03.027.

Crevits, R. and C. Croux (n.d.). Robust Estimation of Linear State Space Models (). doi: 10.2139/ssrn.3068633.

Cuesta-Albertos, J. A., M. Febrero-Bande, and M. Oviedo de la Fuente (2017). The DD^G-classifier in the functional setting. TEST 26, 119–142. doi: 10.1007/s11749-016-0502-6.

Dehghan, S. and M. R. Faridrohani (2019). Affine invariant depth-based tests for the multivariate one-sample location problem. TEST 28, 671–693. doi: 10.1007/s11749-018-0593-3.

Denecke, L. and C. H. Müller (2011). Robust estimators and tests for copulas based on likelihood depth. Computational Statistics and Data Analysis 55, 2724–2738.

Denecke, L. and C. H. Müller (2014). Consistency of the likelihood depth estimator for the correlation coefficient. Statistical Papers 55, 3–13. doi: 10.1007/s00362-012-0490-x.

Dette, H., K. Möllenhoff, S. Volgushev, and F. Bretz (2018). Equivalence of regression curves. Journal of the American Statistical Association 113, 711–729. doi: 10.1080/01621459.2017.1281813.

Dong, Y. and S. Lee (2014). Depth functions as measures of representativeness. Statistical Papers 55, 1079–1105. doi: 10.1007/s00362-013-0555-5.

Dovoedo, Y. H. and S. Chakraborti (2016). On the robustness to symmetry of some nonparametric multivariate one-sample sign-type tests. Journal of Statistical Computation and Simulation 86, 1936–1953. doi: 10.1080/00949655.2015.1092540.

Du, X., A. Engelmann, Y. Jiang, T. Faulwasser, et al. (2020). Optimal experiment design for AC power systems admittance estimation. IFAC-PapersOnLine 53, 13311–13316. doi: 10.1016/j.ifacol.2020.12.163.

Duan, P., L. He, L. Huang, G. Chen, et al. (2022). Sensor scheduling design for complex networks under a distributed state estimation framework. Automatica 146, 110628. doi: 10.1016/j.automatica.2022.110628.

Dümbgen, L. (1992). Limit theorems for the simplicial depth. Statistics and Probability Letters 14, 119–128. doi: 10.1016/0167-7152(92)90075-g.

Dyckerhoff, R., C. Ley, and D. Paindaveine (2015). Depth-based runs tests for bivariate central symmetry. Annals of the Institute of Statistical Mathematics 67, 917–941. doi: 10.1007/s10463-014-0480-y.

Echternacht, D. (2015). Optimierte Positionierung von Messtechnik zur Zustandsschätzung in Verteilnetzen. PhD Thesis. Aachen: Printproduction. url: https://publications.rwth-aachen.de/record/478587.

Falkenau, C. P. (2016). Depth based estimators and tests for autoregressive processes with application on crack growth and oil prices. Dissertation, TU Dortmund. url: http://dx.doi.org/10.17877/DE290R-17269.

Fan, Y. R., G. H. Huang, B. W. Baetz, Y. P. Li, et al. (2017). Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resources Research 53, 4850–4875. doi: 10.1002/2016WR020144.

Flossdorf, J., R. Fried, and C. Jentsch (2023). Online monitoring of dynamic networks using flexible multivariate control charts. Social Network Analysis and Mining 13, 489–502. doi: 10.1007/s13278-023-01091-y.

Flossdorf, J. and C. Jentsch (2021). Change detection in dynamic networks using network characteristics. IEEE Transactions on Signal and Information Processing over Networks 7, 451–464. doi: 10.1109/TSIPN.2021.3094900.

Gibbons, J. and S. Chakraborti (2003). Nonparametric Statistical Inference. Statistics, textbooks and monographs. Marcel Dekker Incorporated. url: https://books.google.pt/books?id=dPhtioXwI9cC.

Hahsler, M. and K. Hornik (2019). TSP: Traveling Salesperson Problem (TSP). url: https://CRAN.R-project.org/package=TSP.

Hampel, F., E. Ronchetti, P. Rousseeuw, and W. Stahel (2011). Robust Statistics: The Approach Based on Influence Functions. New York: Wiley.

Harvey, A. and A. Luati (2014). Filtering With Heavy Tails. Journal of the American Statistical Association 109, 1112–1122. doi: 10.1080/01621459.2014.887011.

Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective. Springer New York.

Heritier, S. and E. Ronchetti (1994). Robust bounded-influence tests in general parametric models. Journal of the American Statistical Association 89, 897–904. doi: 10.2307/2290914.

Hermann, S., K. Ickstadt, and C. H. Müller (2016). Bayesian prediction of crack growth based on a hierarchical diffusion model. Applied Stochastic Models in Business and Industry 32, 494–510. doi: 10.1002/asmb.2175.

Hermann, S., K. Ickstadt, and C. H. Müller (2018). Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments. Reliability Engineering & System Safety 179, 83–96. doi: 10.1016/j.ress.2016.08.012.

Hilbrich, D., S. Raczka, and C. Rehtanz (2022). Optimized grid reduction for state estimation algorithms in under-determined distribution grids. NEIS 2022; Conference on Sustainable Energy Supply and Energy Storage Systems, 1–6. url: https://ieeexplore.ieee.org/document/10048082.

Horn, M. (2020). GSignTest: Robust Tests for Regression-Parameters via Sign Depth. url: https://github.com/melaniehorn/GSignTest.

Horn, M. and C. H. Müller (2020). Tests based on sign depth for multiple regression. SFB 823 Discussion Paper 20.07. url: https://books.google.de/books?id=wyAWzwEACAAJ.

Horn, M. and C. H. Müller (2023). Sign depth tests in multiple regression. Journal of Statistical Computation and Simulation 93, 1169–1191. doi: 10.1080/00949655.2022.2130922.

Huang, Y., Y. Zhang, Y. Zhao, and J. A. Chambers (2019). A Novel Robust Gaussian–Student’s t Mixture Distribution Based Kalman Filter. 67, 3606–3620. doi: 10.1109/TSP.2019.2916755.

Huber, P. and E. Ronchetti (2009). Robust Statistics. New York: Wiley.

Iacus, S. (2008). Simulation and Inference for Stochastic Differential Equations. Springer, New York. url: https://link.springer.com/book/10.1007/978-0-387-75839-8.

Ivanov, E., A. Min, and F. Ramsauer (2017). Copula-based factor models for multivariate asset returns. Econometrics 5. doi: 10.3390/econometrics5020020.

Kennedy, J. and R. Eberhart (1995). Particle swarm optimization. Proceedings of ICNN’95 — International Conference on Neural Networks. Vol. 4. IEEE, 1942–1948.

Klein, D., L. Hackstein, S. Stütz, and C. Rehtanz (2017). An integrated optimization approach for multi-voltage level network expansion planning. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, 923–928. url: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8246021.

Kloubert, M.-L. (2019). Probabilistische Modellierung zur Analyse des Einflusses unsicherer Eingangsgrößen auf das elektrische Übertragungsnetz. Vol. 11. Dortmunder Beiträge zu Energiesystemen, Energieeffizienz und Energiewirtschaft. Düren: Shaker Verlag.

Kloubert, M.-L. and C. Rehtanz (2018). Probabilistic Load Flow Method for Correlated Multimodally Distributed Input Variables. 2018 Power Systems Computation Conference (PSCC). Dublin, Ireland: IEEE, 1–6. doi: 10.23919/PSCC.2018.8442451.

Kohl, T., A. Sigle, T. Kuru, J. Salem, et al. (2022). Comprehensive analysis of complications after transperineal prostate biopsy without antibiotic prophylaxis: Results of a multicenter trial with 30 days’ follow-up. Prostate Cancer and Prostatic Diseases 25, 264–268. doi: 10.1038/s41391-021-00423-3.

Koller, M. and W. A. Stahel (2011). Sharpening Wald-type inference in robust regression for small samples. Computational Statistics & Data Analysis 55, 2504–2515. doi: 10.1016/j.csda.2011.02.014.

Koller, M. and W. A. Stahel (2017). Nonsingular subsampling for regression S-estimators with categorical predictors. Computational Statistics 32, 631–646. doi: 10.1007/s00180-016-0679-x.

Kreuzer, A., L. Dalla Valle, and C. Czado (2022). A Bayesian non-linear state space copula model for air pollution in Beijing. Journal of the Royal Statistical Society Series C: Applied Statistics 71, 613–638. doi: 10.1111/rssc.12548.

Kreuzer, A., L. D. Valle, and C. Czado (2023). Bayesian multivariate nonlinear state space copula models. Computational Statistics & Data Analysis, 107820. doi: 10.1016/j.csda.2023.107820.

Kubrusly, C. S. and H. Malebranche (1985). Sensors and controllers location in distributed systems — A survey. Automatica 21, 117–128. doi: 10.1016/0005-1098(85)90107-4.

Kustosz, C. and S. Szugat (2016). rexpar: Simplicial Depth for Explosive Autoregressive Processes.

Kustosz, C. P., A. Leucht, and C. H. MÜller (2016a). Tests Based on Simplicial Depth for AR(1) Models With Explosion. Journal of Time Series Analysis 37, 763–784. doi: 10.1111/jtsa.12186.

Kustosz, C. P. and C. H. Müller (2014). Analysis of crack growth with robust, distribution-free estimators and tests for non-stationary autoregressive processes. Statistical Papers 55, 125–140. doi: 10.1007/s00362-012-0479-5.

Kustosz, C. P., C. H. Müller, and M. Wendler (2016b). Simplified simplicial depth for regression and autoregressive growth processes. Journal of Statistical Planning and Inference 173, 125–146. doi: 10.1016/j.jspi.2016.01.005.

Lambrichts, W. and M. Paolone (2023). Experimental validation of a unified and linear state estimation method for hybrid AC/DC microgrids. IEEE Powertech 2023. doi: 10.1109/PowerTech55446.2023.10202917.

Leckey, K., D. Malcherczyk, M. Horn, and C. H. Müller (2023). Simple powerful robust tests based on sign depth. Statistical Papers 64, 857–882. doi: 10.1007/s00362-022-01337-5.

Leckey, K., C. H. Müller, S. Szugat, and R. Maurer (2020). Prediction intervals for load-sharing systems in accelerated life testing. Quality and Reliability Engineering International 36, 1895–1915. doi: 10.1002/qre.2664.

Li, Q., R. Negi, and M. D. Ilić (2011). Phasor measurement units placement for power system state estimation: A greedy approach. 2011 IEEE Power and Energy Society General Meeting, 1–8. doi: 10.1109/PES.2011.6039076.

Liu, R. Y. (1988). On a notion of simplicial depth. Proceedings of the National Academy of Sciences of the United States of America 85, 1732–1734. doi: 10.1073/pnas.85.6.1732.

Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics 18, 405–414.

Liu, X., S. Luo, and Y. Zuo (2020). Some results on the computing of Tukey’s halfspace median. Statistical Papers 61, 303–316. doi: 10.1007/s00362-017-0941-5.

Lok, W. S. and S. M. S. Lee (2011). A new statistical depth function with application to multimodal data. Journal of Nonparametric Statistics 23, 617–631. doi: 10.1080/10485252.2011.553953.

López-Pintado, S. and J. Romo (2007). Depth-based inference for functional data. Computational Statistics & Data Analysis 51, 4957–4968. doi: 10.1016/j.csda.2006.10.029.

López-Pintado, S. and J. Romo (2009). On the concept of depth for functional data. Journal of the American Statistical Association 104, 718–734. doi: 10.1198/jasa.2009.0108.

López-Pintado, S., Y. Sun, J. K. Lin, and M. G. Genton (2014). Simplicial band depth for multivariate functional data. Advances in Data Analysis and Classification 8.3, 321–338.

Malcherczyk, D., K. Leckey, and C. H. Müller (2021). K-sign depth: From asymptotics to efficient implementation. Journal of Statistical Planning and Inference 215, 344–355. doi: 10.1016/j.jspi.2021.04.006.

Malevich, N. and C. H. Müller (2019). Optimal design of inspection times for interval censoring. Statistical Papers 60, 449–464. doi: 10.1007/s00362-018-01067-7.

Malevich, N., C. H. Müller, J. Dreier, M. Kansteiner, et al. (2021). Experimental and statistical analysis of the wear of diamond impregnated tools. Wear 468–469, 203574. doi: 10.1016/j.wear.2020.203574.

Marczak, M., T. Proietti, and S. Grassi (2017). A data-cleaning augmented Kalman filter for robust estimation of state space models. Econometrics and Statistics 5, 2452–3062. doi: 10.1016/j.ecosta.2017.02.002.

Markatou, M., W. A. Stahel, and E. Ronchetti (1991). Robust M-type testing procedures for linear models. Directions in Robust Statistics and Diagnostics: Part I. Ed. by W. Stahel and S. Weisberg. New York: Springer, 201–220. url: https://archive-ouverte.unige.ch/unige:23245.

Maronna, R., D. Martin, V. Yohai, and M. Salibián-Barrera (2019). Robust Statistics: Theory and Methods (with R). John Wiley & Sons.

Meinecke, S., D. Sarajlić, S. R. Drauz, A. Klettke, et al. (2020). SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis. Energies 13, 3290. doi: 10.3390/en13123290.

Mestav, K. R., J. Luengo-Rozas, and L. Tong (2019). Bayesian state estimation for unobservable distribution systems via deep learning. IEEE Transactions on Power Systems 34, 4910–4920. doi: 10.1109/TPWRS.2019.2919157.

Mizera, I. (2002). On depth and deep points: A calculus. The Annals of Statistics 30, 1681–1736. doi: 10.1214/aos/1043351254.

Mizera, I. and C. H. Müller (2004). Location-scale depth (with discussion). Journal of the American Statistical Association 99, 949–966. doi: 10.1198/016214504000001312.

Möllenhoff, K., F. Bretz, and H. Dette (2020). Equivalence of regression curves sharing common parameters. Biometrics 76, 518–529. doi: 10.1111/biom.13149.

Möllenhoff, K., H. Dette, E. Kotzagiorgis, S. Volgushev, et al. (2018). Regulatory assessment of drug dissolution profiles comparability via maximum deviation. Statistics in medicine 37, 2968–2981. doi: 10.1002/sim.7689.

Möllenhoff, K., F. Loingeville, J. Bertrand, T. T. Nguyen, et al. (2022). Efficient model-based bioequivalence testing. Biostatistics 23, 314–327. doi: 10.1093/biostatistics/kxaa026.

Moradi, M., H. Amindavar, and J. A. Ritcey (2017). Copula-based particle filtering for target tracking in non-linear/non-Gaussian scenarios with correlated sensors. 2017 IEEE Radar Conference (RadarConf). Seattle, WA, USA: IEEE, 0651–0656. doi: 10.1109/RADAR.2017.7944284.

Mosler, K. (2002). Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach. Lecture Notes in Statistics, 165, Springer, New York.

Möttönen, J. and H. Oja (1995). Multivariate spatial sign and rank methods. Journal of Nonparametric Statistics 5, 201–213. doi: 10.1080/10485259508832643.

Müller, C. and K. Schorning (2023). A-optimal designs for state estimation in networks. Statistical Papers 64, 1159–1186. doi: 10.1007/s00362-023-01435-y.

Müller, C. H. (2005). Depth estimators and tests based on the likelihood principle with application to regression. Journal of Multivariate Analysis 95, 153–181. doi: 10.1016/j.jmva.2004.06.006.

Müller, C. H. and L. Denecke (2013). Stochastik in den Ingenieurwissenschaften — Eine Einführung mit R. Berlin: Springer.

Müller, C. H. and S. H. Meinke (2018). Trimmed likelihood estimators for stochastic differential equations with an application to crack growth analysis from photos. doi: 10.5445/KSP/1000083488/01.

Müller, C. H. and R. Meyer (2022). Inference of intensity-based models for load-sharing systems with damage accumulation. IEEE Transactions on Reliability 71, 539–554. doi: 10.1109/TR.2022.3140483.

Müller, C. H., S. Szugat, N. Celik, and B. R. Clarke (2015). Trimmed likelihood estimators for lifetime experiments and their influence functions. Statistics, 1–20. doi: 10.1080/02331888.2015.1104313.

Muscas, C., M. Pau, P. A. Pegoraro, and S. Sulis (2014). Effects of measurements and pseudomeasurements correlation in distribution system state estimation. IEEE Transactions on Instrumentation and Measurement 63, 2813–2823. doi: 10.1109/TIM.2014.2318391.

Nagy, S. and F. Ferraty (2019). Data depth for measurable noisy random functions. Journal of Multivariate Analysis 170, 95–114. doi: 10.1016/j.jmva.2018.11.003.

Nicolicioiu, A., I. Duta, and M. Leordeanu (2019). Recurrent Space-time Graph Neural Networks. arXiv. url: http://arxiv.org/abs/1904.05582.

Noschese, S., L. Pasquini, and L. Reichel (2013). Tridiagonal Toeplitz matrices: Properties and novel applications. Numerical Linear Algebra with Applications 20, 302–326. doi: 10.1002/nla.1811.

Paindaveine, D. and G. Van Bever (2013). From depth to local depth: A focus on centrality. Journal of the American Statistical Association 108, 1105–1119. doi: 10.1080/01621459.2013.813390.

Paindaveine, D. (2009). On multivariate runs tests for randomness. Journal of the American Statistical Association 104, 1525–1538. doi: 10.1198/jasa.2009.tm09047.

Paindaveine, D. and G. Van Bever (2018). Halfspace depths for scatter, concentration and shape matrices. The Annals of Statistics 46, 3276–3307. doi: 10.1214/17-AOS1658.

Patan, M. and K. Patan (2005). Optimal observation strategies for model-based fault detection in distributed systems. International Journal of Control 78, 1497–1510. doi: 10.1080/00207170500366077.

Pegoraro, P. A., A. Angioni, M. Pau, A. Monti, et al. (2017). Bayesian approach for distribution system state estimation with non-Gaussian uncertainty models. IEEE Transactions on Instrumentation and Measurement 66, 2957–2966. doi: 10.1109/TIM.2017.2728398.

Pook, L. (2000). Linear Elastic Fracture Mechanics for Engineers: Theory and Application. WIT Press, Southampton.

Pukelsheim, F. (2006). Optimal Design of Experiments. Philadelphia: SIAM. doi: 10.1137/1.9780898719109.

Pukelsheim, F. and S. Rieder (1992). Efficient Rounding of Approximate Designs. Biometrika 79.4, 763–770. url: http://www.jstor.org/stable/2337232.

Raczka, S., D. Hilbrich, A. Brüggemann, and C. Rehtanz (2020). A Model Predictive Control Algorithm for large-scale Integration of Electromobility. 10th IEEE PES Innovative Smart Grid Technologies Conference (ISGT Europe 2020), 690–694. doi: 10.1109/ISGT-Europe47291.2020.9248960.

Rego, C., D. Gamboa, F. Glover, and C. Osterman (2011). Traveling salesman problem heuristics: Leading methods, implementations and latest advances. European Journal of Operational Research 211, 427–441. doi: 10.1016/j.ejor.2010.09.010.

Rencher, A. C. (1998). Multivariate Statistical Inference and Applications. Wiley Series in Probability and Statistics, John Wiley & Sons, New York.

Rieder, H. (1994). Robust Asymptotic Statistics. Springer, New York.

Rousseeuw, P. and V. Yohai (1984). Robust Regression by Means of S-Estimators. Robust and Nonlinear Time Series Analysis. Ed. by J. Franke, W. Härdle, and D. Martin. New York, NY: Springer US, 256–272.

Rousseeuw, P. J. and M. Hubert (1999). Regression depth. Journal of the American Statistical Association 94.446, 388–402.

Ruckdeschel, P., B. Spangl, and D. Pupashenko (2014). Robust Kalman tracking and smoothing with propagating and non-propagating outliers. Statistical Papers 55, 93–123. doi: 10.1007/s00362-012-0496-4.

Schlemminger, M., T. Ohrdes, E. Schneider, and M. Knoop (2022). Dataset on electrical single-family house and heat pump load profiles in Germany. Scientific Data 9, 56. doi: 10.1038/s41597-022-01156-1.

Schlösser, T., A. Angioni, F. Ponci, and A. Monti (2014). Impact of pseudo-measurements from new load profiles on state estimation in distribution grids. 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 625–630. doi: 10.1109/I2MTC.2014.6860819.

Schrader, R. M. and T. P. Hettmansperger (1980). Robust analysis of variance based upon a likelihood ratio criterion. Biometrika 67, 93–101. doi: 10.1093/biomet/67.1.93.

Schurtz, A. (2020). Verfahren zur Zustandsschätzung und ihr Beitrag zum Engpassmanagement in Mittelspannungsnetzen. Dissertation, TU Dortmund, Dortmunder Beiträge zu Energiesystemen, Energieeffizienz und Energiewirtschaft, Shaker-Verlag.

Schwierz, T., S. Raczka, D. Hilbrich, and C. Rehtanz (2022). Development of a measurement-based algorithm for topology detection in distribution grids. CIRED Porto Workshop 2022: E-Mobility and Power Distribution Systems. doi: 10.1049/icp.2022.0712.

Silvapulle, M. J. (1992). Robust tests of inequality constraints and one-sided hypotheses in the linear model. Biometrika 79.3, 621–630. url: http://www.jstor.org/stable/2336793.

Singhal, H. and G. Michailidis (2008). Optimal Sampling in State Space Models with Applications to Network Monitoring. doi: 10.1145/1384529.1375474.

Su, P. and G. Wang (2020). Reliability of a Star Configuration Power Grid System with Performance Sharing. 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM), 1–6. doi: 10.1109/APARM49247.2020.9209332.

Torres-Olguin, R., S. Sanchez-Acevedo, O. Mo, and A. Garces-Ruiz (2023). Cyber-physical power system testing platform for topology identification in power distribution grids. IEEE Powertech 2023. doi: 10.1109/PowerTech55446.2023.10202733.

Tukey, J. W. (1975). Mathematics and the picturing of data. Proceedings of the International Congress of Mathematicians 2, 523–531.

Uciński, D. (2004). Optimal measurement methods for distributed parameter system identification. CRC Press.

Uciński, D. (2000). Optimal sensor location for parameter estimation of distributed processes. International Journal of Control 73, 1235–1248. doi: 10.1080/002071700417876.

Uciński, D. (2012). Sensor network scheduling for identification of spatially distributed processes. International Journal of Applied Mathematics and Computer Science 22, 25–40. doi: 10.2478/v10006-012-0002-0.

Uciński, D. (2022). E-optimum sensor selection for estimation of subsets of parameters. Measurement 187, 110286. doi: 10.1016/j.measurement.2021.110286.

Varbella, A., B. Gjorgiev, and G. Sansavini (2023). Geometric deep learning for online prediction of cascading failures in power grids. Reliability Engineering & System Safety 237, 109341. doi: 10.1016/j.ress.2023.109341.

Verdier, G., N. Hilgert, and J.-P. Vila (2008). Optimality of CUSUM Rule Approximations in Change-Point Detection Problems: Application to Nonlinear State–Space Systems. IEEE Transactions on Information Theory 54, 5102–5112. doi: 10.1109/TIT.2008.929964.

Wald, A. and J. Wolfowitz (1940). On a test whether two samples are from the same population. The Annals of Mathematical Statistics 11.2, 147–162. url: http://www.jstor.org/stable/2235872.

Wang, J., R. Zamar, A. Marazzi, V. Yohai, et al. (2019). robust: Port of the S+ "Robust Library". url: https://CRAN.R-project.org/package=robust.

Wang, J. (2019). Asymptotics of generalized depth-based spread processes and applications. Journal of Multivariate Analysis 169, 363–380. doi: 10.1016/j.jmva.2018.09.012.

Wellek, S. (2010). Testing statistical hypothesis of equivalence and noninferiority. 2. Edition, Chapman and Hall/CRC, Heidelberg.

Wellmann, R., P. Harmand, and C. H. Müller (2009). Distribution-free tests for polynomial regression based on simplicial depth. Journal of Multivariate Analysis 100, 622–635. doi: 10.1016/j.jmva.2008.06.009.

Wellmann, R. and C. H. Müller (2010a). Depth notions for orthogonal regression. Journal of Multivariate Analysis 101, 2358–2371. doi: 10.1016/j.jmva.2010.06.008.

Wellmann, R. and C. H. Müller (2010b). Tests for multiple regression based on simplicial depth. Journal of Multivariate Analysis 101, 824–838. doi: 10.1016/j.jmva.2009.12.008.

Weng, Y., R. Negi, and M. D. Ilić (2019). Probabilistic joint state estimation for operational planning. IEEE Transactions on Smart Grid 10, 601–612. doi: 10.1109/TSG.2017.2749369.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wu, X.-H. and S.-M. Song (2019). Robust information unscented particle filter based on M-estimate. IET Signal Processing 13, 14–20. doi: 10.1049/iet-spr.2018.5151.

Xygkis, T. C., G. N. Korres, and N. M. Manousakis (2018). Fisher Information-Based Meter Placement in Distribution Grids via the D-Optimal Experimental Design. IEEE Transactions on Smart Grid 9, 1452–1461. doi: 10.1109/TSG.2016.2592102.

Yohai, V. (1987). High Breakdown-Point and High Efficiency Robust Estimates for Regression. The Annals of Statistics 15.

Yu, Y. (2010). Monotonic convergence of a general algorithm for computing optimal designs. The Annals of Statistics 38.3, 1593–1606.

Zamzam, A. S. and N. D. Sidiropoulos (2020). Physics-Aware Neural Networks for Distribution System State Estimation. IEEE Transactions on Power Systems 35, 4347–4356. doi: 10.1109/TPWRS.2020.2988352.

Zuo, Y. and R. Serfling (2000). General notions of statistical depth function. The Annals of Statistics 28, 461–482.