To content
B02

Statistical methods for energy systems: aggregation and decomposition

B02 addresses statistical methods in the aggregation and decomposition of energy distribution networks to master their complexity from the perspective of upper-level transmission networks. In the long run, the project will develop methodology for electrical distribution grids to cover multi-energy aspects including district heating, heating-ventilation and air-conditioning systems.

Project Leaders

Prof. Dr.-Ing. Timm Faulwasser
Institute of Control Systems
Hamburg University of Technology

Prof. Dr. Roland Fried
Department of Statistics - Chair of Mathematical Statistics and Applications in Science
TU Dortmund University

Summary

This project constructs and investigates statistical methods for aggregation and decomposition to tackle the complexity of energy distribution networks, which can involve easily several 100 individual items with corresponding storage dynamics, e.g., electrical vehicles, controllable loads in households, and energy storage systems. In the first funding phase, we focus on electrical distribution networks (more briefly grids), while later funding periods will cover sector-coupling aspects including district heating as well as heating-ventilation and air-conditioning systems.

Our analysis takes the perspective of upper-level energy transmission networks towards the statistical behavior of lower-level distribution grids at the vertical grid coupling between both layers. Aggregation of the storage dynamics of energy distribution networks can improve system operation on the transmission system via temporal couplings. Control actions decided upon on the transmission level in turn need to be mapped to the individual items composing the distribution systems. In other words, it is necessary to ensure that the action computed for aggregated abstractions can be disaggregated, i.e., control actions can be assigned in a feasible manner to the individual devices. We thus need to construct aggregations which admit statistical guarantees (a) on the temporal evolution of aggregated non-stationary statistics at the coupling, especially with respect to energy demand and active and reactive power fluctuations, and (b) for feasible disaggregation. In view of the highly spatially and temporally dependent and non-Gaussian energy production by distributed renewable energy resources, such as photovoltaics or heat pumps, we construct moment and quantile based uncertainty measures from flexible copula models for their spatio-temporal behavior.

Aien, M., A. Hajebrahimi, and M. Fotuhi-Firuzabad (2016). A comprehensive review on uncertainty modeling techniques in power system studies. Renewable and Sustainable Energy Reviews 57, 1077–1089. doi: 10.1016/j.rser.2015.12.070.

Alkhayat, G. and R. Mehmood (2021). A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy and AI 4, 100060. doi: 10.1016/j.egyai.2021.100060.

Allan, R., A. Leite da Silva, and R. Burchett (1981). Evaluation methods and accuracy in probabilistic load flow solutions. IEEE Transactions on Power Apparatus and Systems 100, 2539–2546. doi: 10.1109/TPAS.1981.316721.

Appino, R., A. Ordiano, R. Mikut, T. Faulwasser, et al. (2018). On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages. Applied Energy 210, 1207–1218. doi: 10.1016/j.apenergy.2017.08.133.

Appino, R. R., V. Hagenmeyer, and T. Faulwasser (2021). Towards Optimality Preserving Aggregation for Scheduling Distributed Energy Resources. IEEE Transactions on Control of Network Systems 8, 1477–1488. doi: 10.1109/TCNS.2021.3070664.

Bauer, R., T. Mühlpfordt, N. Ludwig, and V. Hagenmeyer (2023). Analytical uncertainty propagation for multi-period stochastic optimal power flow. Sustainable Energy, Grids and Networks 33, 100969. doi: 10.1016/j.segan.2022.100969.

Bienstock, D., M. Chertkov, and S. Harnett (2014). Chance-constrained optimal power flow: Risk-aware network control under uncertainty. SIAM Review 56, 461–495. doi: 10.1137/130910312.

Bilgic, D., G. Pan, A. Koch, and T. Faulwasser (2022). Toward data-enabled predictive control of multi-energy distribution systems. Electric Power Systems Research 212, 108311. doi: 10.1016/j.epsr.2022.108311.

Borkowska, B. (1974). Probabilistic load flow. IEEE Transactions on Power Apparatus and Systems 93, 752–759. doi: 10.1109/TPAS.1974.293973.

Bücher, A., J. Lilienthal, P. Kinsvater, and R. Fried (2021). Penalized quasi-maximum likelihood estimation for extreme value models with application to flood frequency analysis. Extremes 24, 325–348. doi: 10.1007/s10687-020-00379-y.

Calafiore, G. and M. Campi (2006). The scenario approach to robust control design. IEEE Transactions on Automatic Control 51, 742–753. doi: 10.1109/TAC.2006.875041.

Capitanescu, F. (2016). Critical review of recent advances and further developments needed in AC optimal power flow. Electric Power Systems Research 136, 57–68. doi: 10.1016/j.epsr.2016.02.008.

Capitanescu, F. (2018). TSO-DSO interaction: Active distribution network power chart for TSO ancillary services provision. Electric Power Systems Research 163, 226–230. doi: 10.1016/j.epsr.2018.06.009.

Carpaneto, E. and G. Chicco (2008). Probabilistic characterisation of the aggregated residential load patterns. IET Generation, Transmission & Distribution 2.3, 373–382.

Chernozhukov, V., I. Fernández-Val, and A. Galichon (2010). Discrimination designs for polynomial regression on compact intervals. Econometrica 78, 1093–1125. url: https://www.jstor.org/stable/40664520.

Contreras, D. A. and K. Rudion (2021). Computing the feasible operating region of active distribution networks: Comparison and validation of random sampling and optimal power flow based methods. IET Generation, Transmission & Distribution 15, 1600–1612. doi: 10.1049/gtd2.12120.

Contreras, D. A. and K. Rudion (2018). Improved assessment of the flexibility range of distribution grids using linear optimization. 2018 Power Systems Computation Conference (PSCC), 1–7. doi: 10.23919/PSCC.2018.8442858.

Dehling, H., R. Fried, and M. Wendler (2020). A robust method for shift detection in time series. Biometrika 107, 647–660. doi: 10.1093/biomet/asaa004.

Delft, A. v. and H. Dette (2021). A similarity measure for second order properties of non-stationary functional time series with applications to clustering and testing. Bernoulli 27, 469–501. doi: 10.3150/20-BEJ1246.

Dette, H. and W. J. Studden (1997). The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis. Vol. 338. John Wiley & Sons.

Dette, H. and S. Volgushev (2008). Non-crossing non-parametric estimates of quantile curves. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 70, 609–627. url: https://www.jstor.org/stable/20203844.

Engelmann, A., Y. Jiang, B. Houska, and T. Faulwasser (2020). Decomposition of non-convex optimization via bi-level distributed ALADIN. IEEE Transactions on Control of Network Systems 7, 1848–1858. doi: 10.1109/TCNS.2020.3005079.

Engelmann, A., T. Mühlpfordt, Y. Jiang, B. Houska, et al. (2018). Distributed stochastic AC optimal power flow. Proceedings of the American Control Conference (ACC). Milwaukee, WI, USA, 6188–6193. doi: 10.23919/ACC.2018.8431090.

Engelmann, A., Y. Jiang, T. Mühlpfordt, B. Houska, et al. (2019). Toward Distributed OPF Using ALADIN. IEEE Transactions on Power Systems 34, 584–594. doi: 10.1109/TPWRS.2018.2867682.

Engelmann, A., M. B. Bandeira, and T. Faulwasser (2023). Approximate dynamic programming with feasibility guarantees. arXiv: 2306.06201.

ENTSOE (2017). Distributed flexibility and the value of TSO/DSO cooperation. Tech. rep. European Network of Transmission System Operatorsfor Electricity (ENTSO-E). url: https://docstore.entsoe.eu/Documents/Publications/Position%20papers%20and%20reports/entsoe_pp_DF_1712_web.pdf.

ENTSOE (2019). TSO-DSO Report — An integrated approach to active system management. Tech. rep. European Network ofTransmission System Operatorsfor Electricity (ENTSO-E). url: https://docstore.entsoe.eu/Documents/Publications/Position%20papers%20and%20reports/TSO-DSO_ASM_2019_190416.pdf.

Evans, M. P., S. H. Tindemans, and D. Angeli (2022). Flexibility framework with recovery guarantees for aggregated energy storage devices. IEEE Transactions on Smart Grid 13, 3519–3531. doi: 10.1109/TSG.2022.3173900.

Farina, M., L. Giulioni, L. Magni, and R. Scattolini (2013). A probabilistic approach to model predictive control. 52nd IEEE Conference on Decision and Control, 7734–7739. doi: 10.1109/CDC.2013.6761117.

Faulwasser, T., R. Ou, G. Pan, P. Schmitz, et al. (2023). Behavioral theory for stochastic systems? A data-driven journey from Willems to Wiener and back again. Annual Reviews in Control. doi: 10.1016/j.arcontrol.2023.03.005.

Frank, S. and S. Rebennack (2016). An introduction to optimal power flow: Theory, formulation, and examples. IIE Transactions 48, 1172–1197. doi: 10.1080/0740817X.2016.1189626.

Fried, R., J. Einbeck, and U. Gather (2007). Weighted Repeated Median Smoothing and Filtering. Journal of the American Statistical Association 102, 1300–1308. doi: 10.1198/016214507000001166.

Gaetan, C., P. Girardi, R. Pastres, and A. Mangin (2016). Clustering chlorophyll — A satellite data using quantiles. The Annals of Applied Statistics 10, 964–988. doi: 10.1214/16-AOAS923.

Garces, A. (2021). Mathematical Programming for Power Systems Operation: From Theory to Applications in Python. John Wiley & Sons. doi: 10.1002/9781119747291.

Gelper, S., R. Fried, and C. Croux (2010). Robust forecasting with exponential and Holt-Winters smoothing. Journal of Forecasting 29, 285–300. doi: 10.1002/for.1125.

Gerster, J., M. Sarstedt, E. M. Veith, S. Lehnhoff, et al. (2021). Pointing out the convolution problem of stochastic aggregation methods for the determination of flexibility potentials at vertical system interconnections. arXiv: 2102.03430.

Gneiting, T. and M. Katzfuss (2014). Probabilistic Forecasting. Annual Review of Statistics and Its Application 1, 125–151. doi: 10.1146/annurev-statistics-062713-085831.

González Ordiano, J. Á., T. Mühlpfordt, E. Braun, J. Liu, et al. (2021). Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow. Applied Energy 302, 117498. doi: 10.1016/j.apenergy.2021.117498.

González Ordiano, J. Á., S. Waczowicz, V. Hagenmeyer, and R. Mikut (2018). Energy forecasting tools and services. WIREs Data Mining and Knowledge Discovery 8, e1235. doi: 10.1002/widm.1235.

Hennig, C., C. Viroli, and L. Anderlucci (2019). Quantile-based clustering. Electronic Journal of Statistics 13, 4849–4883. doi: 10.1214/19-EJS1640.

Hong, H. P. (1998). An efficient point estimate method for probabilistic analysis. Reliability Engineering & System Safety 59, 261–267. doi: 10.1016/S0951-8320(97)00071-9.

Hong, T. and S. Fan (2016). Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting 32, 914–938. doi: 10.1016/j.ijforecast.2015.11.011.

Houska, B., J. Frasch, and M. Diehl (2016). An augmented Lagrangian based algorithm for distributed nonconvex optimization. SIAM Journal on Optimization 26, 1101–1127. doi: 10.1137/140975991.

Jin, L., D. Lee, A. Sim, S. Borgeson, et al. (2017). Comparison of clustering techniques for residential energy behavior. The AAAI-17 Workshop on Artificial Intelligence for Smart Grids and Smart Buildings. Lawrence Berkeley National Laboratory, 260–266. url: https://eta-publications.lbl.gov/sites/default/files/15166-68355-1-pb_1.pdf.

Kaza, N. (2010). Understanding the spectrum of residential energy consumption: A quantile regression approach. Energy policy 38, 6574–6585. doi: 10.1016/j.enpol.2010.06.028.

Lenzi, A. and M. G. Genton (2020). Spatiotemporal probabilistic wind vector forecasting over Saudi Arabia. The Annals of Applied Statistics 14. doi: 10.1214/20-AOAS1347.

Lun, I. Y. and J. C. Lam (2000). A study of Weibull parameters using long-term wind observations. Renewable energy 20.2, 145–153.

Luxburg, U. von, R. Williamson, and I. Guyon (2012). Clustering: Science or art? JMLR Workshop and Conference Proceedings. Vol. 27. Biologische Kybernetik, 65–79. url: https://proceedings.mlr.press/v27/luxburg12a.html.

Mayorga Gonzalez, D., J. Hachenberger, J. Hinker, F. Rewald, et al. (2018). Determination of the time-dependent flexibility of active distribution networks to control their TSO-DSO interconnection power flow. 2018 Power Systems Computation Conference (PSCC), 1–8. doi: 10.23919/PSCC.2018.8442865.

Meinecke, S., D. Sarajlić, S. R. Drauz, A. Klettke, et al. (2020). SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis. Energies 13, 3290. doi: 10.3390/en13123290.

Métivier, D., M. Vuffray, and S. Misra (2020). Efficient polynomial chaos expansion for uncertainty quantification in power systems. Electric Power Systems Research 189, 106791. doi: 10.1016/j.epsr.2020.106791.

Molzahn, D. and I. Hiskens (2019). A survey of relaxations and approximations of the power flow equations. Foundations and Trends® in Electric Energy Systems 4, 1–221. doi: 10.1561/3100000012.

Molzahn, D. K., F. Dörfler, H. Sandberg, S. H. Low, et al. (2017). A survey of distributed optimization and control algorithms for electric power systems. IEEE Transactions on Smart Grid 8, 2941–2962. doi: 10.1109/TSG.2017.2720471.

Morales, J. and J. Perez-Ruiz (2007). Point estimate schemes to solve the probabilistic power flow. IEEE Transactions on Power Systems 22, 1594–1601. doi: 10.1109/TPWRS.2007.907515.

Mühlpfordt, T., T. Faulwasser, and V. Hagenmeyer (2016). Solving stochastic AC power flow via polynomial chaos expansion. IEEE International Conference on Control Applications. Buenos Aires, Argentina, 70–76. doi: 10.1109/CCA.2016.7587824.

Mühlpfordt, T., T. Faulwasser, and V. Hagenmeyer (2018). A generalized framework for chance-constrained optimal power flow. Sustainable Energy, Grids and Networks 16, 231–242. doi: 10.1016/j.segan.2018.08.002.

Mühlpfordt, T., S. Misra, T. Faulwasser, V. Hagenmeyer, et al. (2020a). On polynomial real-time control policies in stochastic AC optimal power flow. Electric Power Systems Research 189, 106792. doi: 10.1016/j.epsr.2020.106792.

Mühlpfordt, T., L. Roald, V. Hagenmeyer, T. Faulwasser, et al. (2019). Chance-Constrained AC Optimal Power Flow: A Polynomial Chaos Approach. IEEE Transactions on Power Systems 34, 4806–4816. doi: 10.1109/TPWRS.2019.2918363.

Mühlpfordt, T., F. Zahn, V. Hagenmeyer, and T. Faulwasser (2020b). PolyChaos.jl — A Julia package for polynomial chaos in systems and control. IFAC-PapersOnLine 53, 7210–7216. doi: 10.1016/j.ifacol.2020.12.552.

Mühlpfordt, T. (2020). Uncertainty Quantification via Polynomial Chaos Expansion — Methods and Applications for Optimization of Power Systems. kitOPEN. doi: 10.5445/IR/1000104661.

Nazir, N. and M. Almassalkhi (2022). Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks. IEEE Transactions on Power Systems 37, 1706–1717. doi: 10.1109/TPWRS.2021.3121215.

O’Hagan, A. (2013). Polynomial chaos: A tutorial and critique from a statistician’s perspective. url: http://www.tonyohagan.co.uk/academic/pdf/Polynomial-chaos.pdf.

Oh, H.-S., T. C. M. Lee, and D. W. Nychka (2011). Fast nonparametric quantile regression with arbitrary smoothing methods. Journal of Computational and Graphical Statistics 20, 510–526. doi: 10.1198/jcgs.2010.10063.

Öztürk, E., K. Rheinberger, T. Faulwasser, K. Worthmann, et al. (2022). Aggregation of demand-side flexibilities: A comparative study of approximation algorithms. Energies 15, 2501. doi: 10.3390/en15072501.

Pan, G. and T. Faulwasser (2023). Distributionally robust uncertainty quantification via data-driven stochastic optimal control. IEEE Control Systems Letters 7, 3036–3041. doi: 10.1109/LCSYS.2023.3290362.

Pinson, P. (2013). Wind energy: Forecasting challenges for its operational management.

Rasmussen, C. E. and C. Williams (2006). Gaussian Processes for Machine Learning. Vol. 1. MIT Press. doi: 10.7551/mitpress/3206.003.

Ratnam, E. L., S. R. Weller, C. M. Kellett, and A. T. Murray (2017). Residential load and rooftop PV generation: An Australian distribution network dataset. International Journal of Sustainable Energy 36, 787–806. doi: 10.1080/14786451.2015.1100196.

Riaz, S. and P. Mancarella (2019). On feasibility and flexibility operating regions of virtual power plants and TSO/DSO interfaces. 2019 IEEE Milan PowerTech, 1–6. doi: 10.1109/PTC.2019.8810638.

Salameh, Z. M., B. S. Borowy, and A. R. Amin (1995). Photovoltaic module-site matching based on the capacity factors. IEEE transactions on Energy conversion 10.2, 326–332.

Sarstedt, M. and L. Hofmann (2022). Monetarization of the feasible operation region of active distribution grids based on a cost-optimal flexibility disaggregation. IEEE Access 10, 5402–5415. doi: 10.1109/ACCESS.2022.3140871.

Sarstedt, M., L. Kluß, J. Gerster, T. Meldau, et al. (2021). Survey and comparison of optimization-based aggregation methods for the determination of the flexibility potentials at vertical system interconnections. Energies 14, 687. doi: 10.3390/en14030687.

Schmidt, S. K., M. Wornowizki, R. Fried, and H. Dehling (2021). An asymptotic test for constancy of the variance under short-range dependence. The Annals of Statistics 49. doi: 10.1214/21-AOS2092.

Sullivan, T. (2015). Introduction to Uncertainty Quantification. 1st ed. Vol. 63. Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-23395-6.

Toussaint, W. (2019). Domestic electrical load metering — Key variables 1994–2014. Tech. rep. Cape Town: UCT Energy Research Centre. doi: 10.25828/mf8s-hh79.

Toussaint, W. and D. Moodley (2020). Clustering residential electricity consumption data to create archetypes that capture household behaviour in South Africa. South African Computer Journal 32, 1–34. doi: 10.18489/sacj.v32i2.845.

Ye, K., J. Zhao, Y. Zhang, X. Liu, et al. (2022). A generalized computationally efficient copula-polynomial chaos framework for probabilistic power flow considering nonlinear correlations of PV injections. International Journal of Electrical Power & Energy Systems 136, 107727. doi: 10.1016/j.ijepes.2021.107727.

Zhang, H. and P. Li (2010). Probabilistic analysis for optimal power flow under uncertainty. IET Generation, Transmission & Distribution 4, 553–561. doi: 10.1049/iet-gtd.2009.0374.

Zhang, M. and A. Parnell (2023). Review of clustering methods for functional data. ACM Transactions on Knowledge Discovery from Data 17, 1–34. doi: 10.1145/3581789.

Zhang, P. and S. Lee (2004). Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion. IEEE Transactions on Power Systems 19, 676–682. doi: 10.1109/TPWRS.2003.818743.

Zhang, X., D. Wang, H. Lian, and G. Li (2022). Nonparametric quantile regression for homogeneity pursuit in panel data models. Journal of Business & Economic Statistics, 1–13. doi: 10.1080/07350015.2022.2118125.

Zhang, Y., J. Wang, and X. Wang (2014). Review on probabilistic forecasting of wind power generation. Renewable and Sustainable Energy Reviews 32, 255–270. doi: 10.1016/j.rser.2014.01.033.

Zhou, X., G. Yang, and Y. Xiang (2022). Quantile-wavelet nonparametric estimates for time-varying coefficient models. Mathematics 10. doi: 10.3390/math10132321.