Uncertainty quantification for decision support in transport logistics systems
B03 aims at decision support for the optimal scheduling of tasks and the assignment of resources in transport logistics facilities. The goal is a cost-oriented focus on records to be collected and aid decision-making, reducing costs in terms of money, energy and operation time. In the long run, statistical methods will be provided for different transport logistics nodes as elements of supply chains, which will allow the optimization of local decisions with an end-to-end view in global networks.
Project Leaders
Prof. Dr.-Ing. Uwe Clausen
Department of Mechanical Engineering - Institute of Transport Logistics
TU Dortmund University
Prof. Dr. Sonja Kuhnt
Faculty of Computer Science - Mathematical Statistics
Fachhochschule Dortmund - University of Applied Sciences and Arts
Summary
Global trade and e-commerce have led to an increase in commercial transport worldwide. More and more logistical hubs are built, which require quick, informed logistical decisions. Reducing greenhouse gas emissions and increasing energy efficiency are of growing importance in the transport sector. Logistics as a discipline for designing and managing spatio-temporal configurations of production and distribution systems requires researchers and practitioners to understand and operate transport logistics facilities better.
Our project aims to enhance the decision-making and design processes for transport logistic systems by using simulation studies, developing appropriate surrogate models, sensitivity analysis methods, and global optimization algorithms. The project addresses systems like container, parcel sorting, and less-than-truckload terminals. One source of uncertainty are data sets for system loads and process settings that are essential for simulation experiments of transport logistic systems. System loads include the geocoded location of each shipment’s destination, its arrival times and due dates for departure, and specific information about the shipments. The uncertainty in logistic key performance indicators due to uncertainties in system load, process, and decision variables will be assessed by global sensitivity analysis. We will develop Sobol and Shapley type sensitivity measures for dependent spatio-temporal and categorical input variables and methods to ascertain the value of information. Applied to system load variables and process settings, this will allow a cost-oriented focus on the data sets to be collected from reality.
Decisions in transport logistics systems are the choice of the most appropriate system configurations, e.g., scheduling of tasks and allocation of resources such as equipment, space, and personnel. In a simulation, these configurations are included as decision variables. The effect on operational characteristics (e.g., the dwell time, CO2 emissions of the sorting process, terminal-operating times) are of interest and should be optimized. Sensitivity analysis, predictions, and global optimization results from fast-running statistical surrogate models of the simulator will support operator decisions, especially when they need to be taken under uncertainty. The project will develop surrogate models, e.g., Gaussian process models (kriging), for mixed numeric, categorical, and spatio-temporal predictor variables. From a logistics perspective, this first phase of TRR 391 aims to develop fast algorithms for tactical decision support in transport logistics facilities.
Ardakani, A. and J. Fei (2020). A systematic literature review on uncertainties in cross-docking operations. Modern Supply Chain Research and Applications 2, 2–22. doi: 10.1108/MSCRA-04-2019-0011.
Bartz-Beielstein, T. and M. Zaefferer (2017). Model-based methods for continuous and discrete global optimization. Applied Soft Computing 55, 154–167. doi: 10.1016/j.asoc.2017.01.039.
Betancourt, J., F. Bachoc, T. Klein, D. Idier, et al. (2020). Gaussian process metamodeling of functional-input code for coastal flood hazard assessment. Reliability Engineering & System Safety 198, 106870. doi: 10.1016/j.ress.2020.106870.
Binder, N., H. Dette, J. Franz, D. Zöller, et al. (2022a). Data Mining in Urology: Understanding Real-world Treatment Pathways for Lower Urinary Tract Systems via Exploration of Big Data. European urology focus. doi: 10.1016/j.euf.2022.03.019.
Binder, N., T. A. Gerds, and P. K. Andersen (2014). Pseudo-observations for competing risks with covariate dependent censoring. Lifetime data analysis 20, 303–315. doi: 10.1007/s10985-013-9247-7.
Binder, N., A.-S. Herrnböck, and M. Schumacher (2017). Estimating hazard ratios in cohort data with missing disease information due to death. Biometrical Journal 59, 251–269. doi: 10.1002/bimj.201500167.
Binder, N., K. Möllenhoff, A. Sigle, and H. Dette (2022b). Similarity of competing risks models with constant intensities in an application to clinical healthcare pathways involving prostate cancer surgery. Statistics in Medicine 41, 3804–3819. doi: 10.1002/sim.9481.
Bretz, F., K. Möllenhoff, H. Dette, W. Liu, et al. (2018). Assessing the similarity of dose response and target doses in two non-overlapping subgroups. Statistics in Medicine 37, 722–738. doi: 10.1002/sim.7546.
Chen, J. K., R.-B. Chen, A. Fujii, R. Suda, et al. (2018). Surrogate-assisted tuning for computer experiments with qualitative and quantitative parameters. Statistica Sinica, 761–789. doi: 10.5705/ss.202017.0138.
Chen, W., M. Genton, and Y. Sun (2021). Space-time covariance structures and models. Annual Review of Statistics and Its Application 8, 191–215. doi: 10.1146/annurev-statistics-042720-115603.
Clausen, U., M. Brueggenolte, M. Kirberg, C. Besenfelder, et al. (2019). Agent-based simulation in logistics and supply chain research: Literature review and analysis. Advances in Production, Logistics and Traffic. Ed. by U. Clausen, S. Langkau, and F. Kreuz. Lecture Notes in Logistics. Cham: Springer International Publishing, 45–59. doi: 10.1007/978-3-030-13535-5_4.
Clausen, U., D. Diekmann, J. Baudach, J. Kaffka, et al. (2015). Improving parcel transshipment operations - impact of different objective functions in a combined simulation and optimization approach. 2015 Winter Simulation Conference (WSC). Huntington Beach, CA, USA: IEEE, 1924–1935. doi: 10.1109/WSC.2015.7408309.
Clausen, U., D. Diekmann, M. Pöting, and C. Schumacher (2017). Operating parcel transshipment terminals: a combined simulation and optimization approach. Journal of Simulation 11, 2–10. doi: 10.1057/s41273-016-0032-y.
Cressie, N. (2015). Statistics for Spatial Data. John Wiley & Sons. doi: 10.1002/9781119115151.
De Bastiani, F., R. A. Rigby, D. M. Stasinopoulous, A. H. Cysneiros, et al. (2018). Gaussian Markov random field spatial models in GAMLSS. Journal of Applied Statistics 45, 168–186. doi: 10.1080/02664763.2016.1269728.
Dette, H., K. Möllenhoff, S. Volgushev, and F. Bretz (2018). Equivalence of regression curves. Journal of the American Statistical Association 113, 711–729. doi: 10.1080/01621459.2017.1281813.
Diekmann, D., U. Clausen, and I. Dormuth (2015). Impact of different input data sets on the sorting system performance of a parcel transshipment terminal. The European Simulation and Modelling Conference 2015, 423–427. doi: 10.1057/s41273-016-0032-y.
Evangelou, E. and J. Eidsvik (2017). The value of information for correlated GLMs. Journal of Statistical Planning and Inference 180, 30–48. doi: 10.1016/j.jspi.2016.08.005.
Franzke, T., E. H. Grosse, C. H. Glock, and R. Elbert (2017). An investigation of the effects of storage assignment and picker routing on the occurrence of picker blocking in manual picker-to-parts warehouses. The International Journal of Logistics Management 28, 841–863. doi: 10.1108/IJLM-04-2016-0095.
Fruth, J., O. Roustant, and S. Kuhnt (2014). Total interaction index: A variance-based sensitivity index for second-order interaction screening. Journal of Statistical Planning and Inference 147, 212–223. doi: 10.1016/j.jspi.2013.11.007.
Fruth, J., O. Roustant, and S. Kuhnt (2019). Support indices: Measuring the effect of input variables over their supports. Reliability Engineering & System Safety 187, 17–27. doi: 10.1016/j.ress.2018.07.026.
Gamboa, F., T. Klein, and A. Lagnoux (2018). Sensitivity Analysis Based on Cramér–von Mises Distance. SIAM/ASA Journal on Uncertainty Quantification 6, 522–548. doi: 10.1137/15M1025621.
Gautier, A., D. Ginsbourger, and G. Pirot (2021). Goal-oriented adaptive sampling under random field modelling of response probability distributions. ESAIM: Proceedings and Surveys 71. Ed. by D. Auroux, J.-B. Caillau, R. Duvigneau, A. Habbal, et al., 89–100. doi: 10.1051/proc/202171108.
Gilquin, L., C. Prieur, E. Arnaud, and H. Monod (2021). Iterative estimation of Sobol’ indices based on replicated designs. Computational and Applied Mathematics 40, 18. doi: 10.1007/s40314-020-01402-5.
Greven, S. and F. Scheipl (2017). A general framework for functional regression modelling. Statistical Modelling, 1–35. doi: 10.1177/1471082X16681317.
Heredia, M. B., C. Prieur, and N. Eckert (2022). Global sensitivity analysis with aggregated Shapley effects, application to avalanche hazard assessment. Reliability Engineering & System Safety 222, 108420. doi: 10.1016/j.ress.2022.108420.
Huang, H., D. K. Lin, M.-Q. Liu, and J.-F. Yang (2016). Computer experiments with both qualitative and quantitative variables. Technometrics 58, 495–507. doi: 10.1080/00401706.2015.1094416.
Jones, D. R., M. Schonlau, and W. J. Welch (1998). Efficient Global Optimization of Expensive Black-Box Functions. Journal of Global Optimization 13, 455–492. doi: 10.1023/A:1008306431147.
Kirchhoff, D. (2021). Gaussian Process models and global optimization with categorical variables. PhD thesis. url: https://eldorado.tu-dortmund.de/handle/2003/40541.
Kirchhoff, D., M. Kirberg, S. Kuhnt, and U. Clausen (2023). Metamodel-based optimization of shift planning in high-bay warehouse operations. Quality and Reliability Engineering International 39, 590–608. doi: 10.1002/qre.3207.
Kleijnen, J. P. (2017). Regression and Kriging metamodels with their experimental designs in simulation: A review. European Journal of Operational Research 256, 1–16. doi: 10.1016/j.ejor.2016.06.041.
Kneib, T. (2020). Comments on: Inference and computation with generalized additive models and their extensions. TEST 29, 351–353. doi: 10.1007/s11749-020-00714-2.
Kohl, T., A. Sigle, T. Kuru, J. Salem, et al. (2022). Comprehensive analysis of complications after transperineal prostate biopsy without antibiotic prophylaxis: Results of a multicenter trial with 30 days’ follow-up. Prostate Cancer and Prostatic Diseases 25, 264–268. doi: 10.1038/s41391-021-00423-3.
Kuhnt, S. and A. Kalka (2022). Global Sensitivity Analysis for the Interpretation of Machine Learning Algorithms. Artificial Intelligence, Big Data and Data Science in Statistics: Challenges and Solutions in Environmetrics, the Natural Sciences and Technology. Ed. by A. Steland and K.-L. Tsui. Cham: Springer International Publishing, 155–169. doi: 10.1007/978-3-031-07155-3_6.
Kuhnt, S., D. Kirchhoff, S. Wenzel, and J. Stolipin (2020). Generating Logistic Characteristic Curves using Discrete Event Simulation and Response Surface Models. SNE Simulation Notes Europe 30, 95–104. doi: 10.11128/sne.30.tn.10522.
Kuhnt, S., V. Sander, U. Clausen, J. Kaffka, et al. (n.d.). ANALYSING LTL TERMINAL PERFORMANCE BY COMBINING SIMULATION AND STATISTICS.
La Fuente, R. de, J. Gatica, and R. L. Smith (2019). A simulation model to determine staffing strategy and warehouse capacity for a local distribution center. 2019 Winter Simulation Conference (WSC). IEEE, 1743–1754. doi: 10.1109/WSC40007.2019.9004806.
Law, A. M. (2015). Simulation Modeling and Analysis. 5th ed. New York, NY: McGraw-Hill Education.
Lekivetz, R. and B. Jones (2019). Fast flexible space-filling designs with nominal factors for nonrectangular regions. Quality and Reliability Engineering International 35, 677–684. doi: 10.1002/qre.2429.
Mai, H., J. Lee, J. Kang, H. Nguyen-Xuan, et al. (2022). An Improved Blind Kriging Surrogate Model for Design Optimization Problems. Mathematics 10. doi: 10.3390/math10162906.
Möllenhoff, K., F. Bretz, and H. Dette (2020). Equivalence of regression curves sharing common parameters. Biometrics 76, 518–529. doi: 10.1111/biom.13149.
Möllenhoff, K., H. Dette, E. Kotzagiorgis, S. Volgushev, et al. (2018). Regulatory assessment of drug dissolution profiles comparability via maximum deviation. Statistics in medicine 37, 2968–2981. doi: 10.1002/sim.7689.
Möllenhoff, K., F. Loingeville, J. Bertrand, T. T. Nguyen, et al. (2022). Efficient model-based bioequivalence testing. Biostatistics 23, 314–327. doi: 10.1093/biostatistics/kxaa026.
Mowe, M., L. Jurgeleit, M. Kiefer, C. Schumacher, et al. (2023). Generic simulation model for less-then-truckload terminals based on requirements of SMEs. 20. ASIM Fachtagung Simulation in Produktion und Logistik 2023. Universitätsverlag Ilmenau, 323–332. doi: 10.22032/dbt.57891.
Muehlenstaedt, T., J. Fruth, and O. Roustant (2017). Computer experiments with functional inputs and scalar outputs by a norm-based approach. Statistics and Computing 27, 1083–1097. doi: 10.1007/s11222-016-9672-z.
Muehlenstaedt, T., O. Roustant, L. Carraro, and S. Kuhnt (2012). Data-driven Kriging models based on FANOVA-decomposition. Statistics and Computing 22, 723–738. doi: 10.1007/s11222-011-9259-7.
Munoz Zuniga, M. and D. Sinoquet (2020). Global optimization for mixed categorical-continuous variables based on Gaussian process models with a randomized categorical space exploration step. INFOR: Information Systems and Operational Research 58, 310–341. doi: 10.1080/03155986.2020.1730677.
Myklebust, H. O. V., J. Eidsvik, I. B. Sperstad, and D. Bhattacharjya (2020). Value of Information Analysis for Complex Simulator Models: Application to Wind Farm Maintenance. Decision Analysis 17, 134–153. doi: 10.1287/deca.2019.0405.
Owen, A. B. and C. Prieur (2017). On Shapley Value for Measuring Importance of Dependent Inputs. SIAM/ASA Journal on Uncertainty Quantification 5, 986–1002. doi: 10.1137/16M1097717.
Park, I. (2021). Lasso Kriging for efficiently selecting a global trend model. Structural and Multidisciplinary Optimization, 1527–1542. doi: 10.1007/s00158-021-02939-7.
Rabitti, G. and E. Borgonovo (2019). A Shapley-Owen index for interaction quantification. SIAM/ASA Journal on Uncertainty Quantification 7, 1060–1075. doi: 10.1137/18M1221801.
Razavi, S., A. Jakeman, A. Saltelli, C. Prieur, et al. (2021). The future of sensitivity analysis: An essential discipline for systems modeling and policy support. Environmental Modelling & Software 137, 104954. doi: 10.1016/j.envsoft.2020.104954.
Rohmer, J., O. Roustant, S. Lecacheux, and J.-C. Manceau (2022). Revealing the interlevel dependence structure of categorical inputs in numerical environmental simulations with kernel model selection. Environmental Modelling & Software 151, 105380. doi: 10.1016/j.envsoft.2022.105380.
Roustant, O., J. Fruth, B. Iooss, and S. Kuhnt (2014). Crossed-derivative based sensitivity measures for interaction screening. Mathematics and Computers in Simulation 105, 105–118. doi: 10.1016/j.matcom.2014.05.005.
Roustant, O., E. Padonou, Y. Deville, A. Clément, et al. (2020). Group Kernels for Gaussian Process Metamodels with Categorical Inputs. SIAM/ASA Journal on Uncertainty Quantification 8, 775–806. doi: 10.1137/18M1209386.
Smith, R. (2013). Uncertainty quantification: Theory, implementation, and applications. Computational Science and Engineering. SIAM.
Stasinopoulos, M. D., R. A. Rigby, G. Z. Heller, V. Voudouris, et al. (2017). Flexible regression and smoothing: Using GAMLSS in R. CRC Press. doi: 10.18637/jss.v085.b02.
Sullivan, T. (2015). Introduction to Uncertainty Quantification. 1st ed. Vol. 63. Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-23395-6.
VDI Association of German Engineers e.V. (2014). Simulation von Logistik-, Materialfluss- und Produktionssystemen — Grundlagen: Part 1.
Yi Zhang, Y., W. Yao, X. Chen, and S. Ye (2020). A penalized blind likelihood Kriging method for surrogate modeling. Structural and Multidisciplinary Optimization, 457–474. doi: 10.1007/s00158-019-02368-7.
Zhang, Y., D. W. Apley, and W. Chen (2020a). Bayesian optimization for materials design with mixed quantitative and qualitative variables. Scientific Reports 10, 4924. doi: 10.1038/s41598-020-60652-9.
Zhang, Y., S. Tao, W. Chen, and D. W. Apley (2020b). A latent variable approach to Gaussian process modeling with qualitative and quantitative factors. Technometrics 62, 291–302. doi: 10.1080/00401706.2019.1638834.
Zouhaier, H., F. Kebair, F. Serin, and L. Ben Said (2013). Multi-agent modeling and simulation of a hub port logistics. 2013 International Conference on Control, Decision and Information Technologies (CoDIT). Hammamet, Tunisia: IEEE, 671–676. doi: 10.1109/CoDIT.2013.6689623.