Real-time spatio-temporal data analysis for monitoring logistics networks
B04 considers logistics distribution networks and investigates methods for prediction and uncertainty quantification, which integrate different data types such as barcode scans, arrival confirmations, weather, and tracing data. In the long run, different modeling frameworks (based on agents, flow/density/speed, or (stochastic) partial differential equations) will be integrated, so that the best prediction method and the data needed can be chosen in a dynamic, adaptive fashion for the specific situation and a given prediction accuracy.
Project Leaders
Prof. Dr. Paul-Christian Bürkner
Department of Statistics - Chair of Computational Statistics
TU Dortmund University
Prof. Dr.-Ing. Anne Meyer
Institute for Information Management in Engineering - Chair of Data Science in Mechanical Engineering
Karlsruhe Institute of Technology
Prof. Dr. Edzer Pebesma
Faculty of Geosciences - Institute for Geoinformatics
University of Münster
Summary
In complex logistics and supply chain networks, the acquisition of tracking data representing the flow of entities through the networks has become - due to increased connectivity and cheaper hardware - state of the art. In addition to pure spatio-temporal data, related event data such as barcode scans at logistics hubs or arrival confirmations of airplanes is acquired. The goal of tracking entities is to improve transparency and predict the state of the network. An important value for operations is the estimated time of arrival of entities at different nodes of the network. The respective business goal determines the requirements for the forecasting procedure: it might be necessary to detect a delay in a container ship transport as early as possible (weeks before the arrival) to be able to send a replacement for urgent parts by air. Or it might be necessary to predict the arrival of trucks within the next hour as accurately as possible to manage the traffic at logistics sites. However, acquiring data is costly in terms of money, energy used by sensors, and required IT infrastructure. In such a context, optimal designs for data collection are not easily found.
This project will combine existing prediction methods and develop new methods for predicting arrival times in complex logistics networks (e.g., multi-modal transport networks). The novelty of the methods compared to the state of the art is (a) the integration of different data types, e.g., event, weather, and tracing data, (b) the ability to cope with changes in the underlying logistics network in real-time, and (c) the ability to communicate uncertainty in predictions, especially in case of tracing data or weather forecasts of limited reliability. We will furthermore develop a new framework to determine the value of information for modeling arrival times. With this framework, users will be able to calculate the time and the locations for acquiring event or tracing data in the network as well as the temporal and spatial resolution that is necessary to provide arrival times of sufficient quality for their respective business needs. Thus, it supports the design of data collection in logistics networks.
Alos, A., C. Bergeron, C. Buontempo, J. Thepaut, et al. (2019). The Copernicus Climate Data Store: ECMWF’s approach to providing online access to climate data and tools. AGU Fall Meeting Abstracts.
Appel, M. and E. Pebesma (2019). On-demand processing of data cubes from satellite image collections with the gdalcubes library. Data 4, 92. doi: 10.3390/data4030092.
Appel, M. and E. Pebesma (2020). Spatiotemporal multi-resolution approximations for analyzing global environmental data. Spatial Statistics 38, 100465. doi: 10.1016/j.spasta.2020.100465.
Bastin, L., D. Cornford, R. Jones, G. B. M. Heuvelink, et al. (2013). Managing uncertainty in integrated environmental modelling: The UncertWeb framework. Environmental Modelling & Software 39, 116–134. doi: 10.1016/j.envsoft.2012.02.008.
Bazzan, A. L. C. and F. Klügl (2014). A review on agent-based technology for traffic and transportation. The Knowledge Engineering Review 29, 375. doi: 10.1017/S0269888913000118.
Boysen, N., S. Emde, M. Hoeck, and M. Kauderer (2015). Part logistics in the automotive industry: Decision problems, literature review and research agenda. European Journal of Operational Research 242, 107–120. doi: 10.1016/j.ejor.2014.09.065.
Bürkner, P.-C. (2017). brms: An R Package for Bayesian multilevel models using Stan. Journal of Statistical Software 80, 1–28. doi: 10.18637/jss.v080.i01.
Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. The R Journal 10, 395–411. doi: 10.32614/RJ-2018-017.
Bürkner, P.-C. (2020). Bayesian Item Response Modelling in R with brms and Stan. Journal of Statistical Software, 1–54. doi: 10.18637/jss.v100.i05.
Bürkner, P.-C., J. Gabry, and A. Vehtari (2020). Approximate leave-future-out cross-validation for Bayesian time series models. Journal of Statistical Computation and Simulation, 2499–2523. doi: 10.1080/00949655.2020.1783262.
Chen, C.-M., C.-C. Liang, and C.-P. Chu (2020). Long-term travel time prediction using gradient boosting. Journal of Intelligent Transportation Systems 24, 109–124. doi: 10.1080/15472450.2018.1542304.
Cranmer, K., J. Brehmer, and G. Louppe (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1912789117.
Duan, Y., Y. L.V., and F.-Y. Wang (2016). Travel time prediction with LSTM neural network. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro: IEEE, 1053–1058. doi: 10.1109/ITSC.2016.7795686.
Elsemüller, L., M. Schnuerch, P.-C. Bürkner, and S. T. Radev (2024). A Deep Learning Method for Comparing Bayesian Hierarchical Models. Psychological Methods. arXiv: 2301.11873.
Feurer, M., K. Eggensperger, S. Falkner, M. Lindauer, et al. (2022). Auto-Sklearn 2.0: Hands-free AutoML via meta-learning. The Journal of Machine Learning Research 23.1, 11936–11996. url: http://jmlr.org/papers/v23/21-0992.html.
Feurer, M., A. Klein, K. Eggensperger, J. Springenberg, et al. (2015). Efficient and Robust Automated Machine Learning. Advances in Neural Information Processing Systems, 2962–2970. url: http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf.
Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, et al. (2013). Bayesian Data Analysis (3rd Edition). London: Chapman and Hall/CRC.
Glock, K. and A. Meyer (2020). Mission planning for emergency rapid mapping with drones. Transportation Science 54, 534–560. doi: 10.1287/trsc.2019.0963.
Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, et al. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18–27. doi: 10.1016/j.rse.2017.06.031.
Gräler, B., E. Pebesma, and G. Heuvelink (2016). Spatio-Temporal Interpolation using gstat. The R Journal 8, 204–218. doi: 10.32614/RJ-2016-014.
Gupta, S., E. Pebesma, A. Degbelo, and A. C. Costa (2018a). Optimising Citizen-Driven Air Quality Monitoring Networks for Cities. ISPRS International Journal of Geo-Information 7. doi: 10.3390/ijgi7120468.
Gupta, S., E. Pebesma, J. Mateu, and A. Degbelo (2018b). Air Quality Monitoring Network Design Optimisation for Robust Land Use Regression Models. Sustainability 10, 1442. doi: 10.3390/su10051442.
Heaton, L. L. M., E. López, P. K. Maini, M. D. Fricker, et al. (2012). Advection, diffusion, and delivery over a network. Physical Review E 86, 021905. doi: 10.1103/PhysRevE.86.021905.
Hersbach, H., B. Bell, P. Berrisford, G. Biavati, et al. (2019). The ERA5 Global Atmospheric Reanalysis at ECMWF as a comprehensive dataset for climate data homogenization, climate variability, trends and extremes. Geophysical Research Abstracts. Vol. 21.
Herty, M., A. Klar, and A. Singh (2007). An ODE traffic network model. Journal of Computational and Applied Mathematics 203, 419–436. doi: 10.1016/j.cam.2006.04.007.
Huang, H., M. Pouls, A. Meyer, and M. Pauly (2020). Travel Time Prediction Using Tree-Based Ensembles. Computational Logistics. Ed. by E. Lalla-Ruiz, M. Mes, and S. Voß. Vol. 12433. Cham: Springer International Publishing, 412–427. doi: 10.1007/978-3-030-59747-4_27.
Lavin, A., D. Krakauer, H. Zenil, J. Gottschlich, et al. (2022). Simulation Intelligence: Towards a New Generation of Scientific Methods. arXiv: 2112.03235.
Lee, J., L. Marla, and A. Jacquillat (2020). Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty. Transportation Science 54, 973–997. doi: 10.1287/trsc.2020.0983.
Li, R. and G. Rose (2011). Incorporating uncertainty into short-term travel time predictions. Transportation Research Part C: Emerging Technologies 19, 1006–1018. doi: 10.1016/j.trc.2011.05.014.
Lu, M., M. Appel, and E. Pebesma (2018). Multidimensional Arrays for Analysing Geoscientific Data. ISPRS International Journal of Geo-Information 7, 313. doi: 10.3390/ijgi7080313.
Mao, W., I. Rychlik, J. Wallin, and G. Storhaug (2016). Statistical models for the speed prediction of a container ship. Ocean Engineering 126, 152–162. doi: 10.1016/j.oceaneng.2016.08.033.
Meyer, A. and B. Amberg (2018). Transport concept selection considering supplier milk runs – An integrated model and a case study from the automotive industry. Transportation Research Part E: Logistics and Transportation Review 113, 147–169. doi: 10.1016/j.tre.2017.07.004.
Meyer, A., K. Glock, and F. Radaschewski (2021). Planning profitable tours for field sales forces: A unified view on sales analytics and mathematical optimization. Omega 105, 102518. doi: 10.1016/j.omega.2021.102518.
Meyer, A., S. Sejdovic, K. Glock, M. Bender, et al. (2018a). A disruption management system for automotive inbound networks: concepts and challenges. EURO Journal on Transportation and Logistics 7, 25–56. doi: 10.1007/s13676-017-0108-5.
Meyer, A., S. Zander, R. Knapper, and T. Setzer (2018b). Decision Support Pipelines — Durchgängige Datenverarbeitungsinfrastrukturen für die Entscheidungen von morgen. Zukunft der Arbeit — Eine praxisnahe Betrachtung. Ed. by S. Wischmann and E. Hartmann. Berlin, Heidelberg: Springer Vieweg. doi: 10.1007/978-3-662-49266-6_15.
Modrák, M., A. H. Moon, S. Kim, P. Bürkner, et al. (2023). Simulation-Based Calibration Checking for Bayesian Computation: The Choice of Test Quantities Shapes Sensitivity. arXiv: 2211.02383.
Pebesma, E. (2012). spacetime: Spatio-Temporal Data in R. Journal of Statistical Software 51, 1–30. doi: 10.18637/jss.v051.i07.
Pebesma, E. and R. Bivand (2023). Spatial Data Science: With Applications in R. Chapman and Hall/CRC. doi: 10.1201/9780429459016.
Pebesma, E. J. and G. B. Heuvelink (1999). Latin hypercube sampling of Gaussian random fields. Technometrics 41, 303–312. doi: 10.1080/00401706.1999.10485930.
Polson, N. and V. Sokolov (2015). Bayesian analysis of traffic flow on interstate I-55: The LWR model. The Annals of Applied Statistics 9, 1864–1888. doi: 10.1214/15-AOAS853.
Poschmann, P., M. Weinke, A. Balster, F. Straube, et al. (2019). Realization of ETA Predictions for Intermodal Logistics Networks Using Artificial Intelligence. Advances in Production, Logistics and Traffic. Ed. by U. Clausen, S. Langkau, and F. Kreuz. Cham: Springer International Publishing, 155–176. doi: 10.1007/978-3-030-13535-5_12.
Pouls, M., N. Ahuja, K. Glock, and A. Meyer (2022). Adaptive forecast-driven repositioning for dynamic ride-sharing. Annals of Operations Research. doi: 10.1007/s10479-022-04560-3.
Pouls, M., A. Meyer, and N. Ahuja (2020). Idle Vehicle Repositioning for Dynamic Ride-Sharing. Computational Logistics. Ed. by E. Lalla-Ruiz, M. Mes, and S. Voß. Vol. 12433. Cham: Springer International Publishing, 507–521. doi: 10.1007/978-3-030-59747-4_33.
Radev, S. T., M. D’Alessandro, U. K. Mertens, A. Voss, et al. (2021). Amortized Bayesian model comparison with evidential deep learning. IEEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2021.3124052.
Radev, S. T., U. K. Mertens, A. Voss, L. Ardizzone, et al. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. IEEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2020.3042395.
Radev, S. T., M. Schmitt, V. Pratz, U. Picchini, et al. (2023). JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models. UAI Conference Proceedings.
Riutort-Mayol, G., P.-C. Bürkner, M. R. Andersen, A. Solin, et al. (2022). Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming. Statistics and Computing 33. doi: 10.1007/s11222-022-10167-2.
Schmitt, M., P.-C. Bürkner, U. Köthe, and S. T. Radev (2022). Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks. ArXiv: 2112.08866.
Schramm, M., E. Pebesma, M. Milenković, L. Foresta, et al. (2021). The openEO API — Harmonising the Use of Earth Observation Cloud Services Using Virtual Data Cube Functionalities. Remote Sensing 13. doi: 10.3390/rs13061125.
Schumacher, L., P.-C. Bürkner, A. Voss, U. Köthe, et al. (2023). Neural Superstatistics: A Bayesian Method for Estimating Dynamic Models of Cognition. Scientific Reports. doi: 10.1038/s41598-023-40278-3.
Senaratne, H., L. Gerharz, E. Pebesma, and A. Schwering (2012). Usability of spatio-temporal uncertainty visualisation methods. Bridging the Geographic Information Sciences: International AGILE’2012 Conference. Springer, 3–23.
Stan Development Team (2023). Stan Modeling Language Users Guide and Reference Manual, 2.31.0. url: https://mc-stan.org.
Talts, S., M. Betancourt, D. Simpson, A. Vehtari, et al. (2020). Validating Bayesian inference algorithms with simulation-based calibration. arXiv: 1804.06788.
Teickner, H., C. Knoth, T. Bartoschek, K. Kraehnert, et al. (2020). Patterns in Mongolian nomadic household movement derived from GPS trajectories. Applied Geography 122, 102270. doi: 10.1016/j.apgeog.2020.102270.
Tornede, T., A. Tornede, M. Wever, F. Mohr, et al. (2020). AutoML for predictive maintenance: One tool to RUL them all. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning. Springer, 106–118.
Truong, P. N., G. B. Heuvelink, and J. P. Gosling (2013). Web-based tool for expert elicitation of the variogram. Computers & Geosciences 51, 390–399. doi: 10.1016/j.cageo.2012.08.010.
Vehtari, A., A. Gelman, D. Simpson, B. Carpenter, et al. (2021). Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC (with discussion). Bayesian Analysis 16, 667–718. doi: 10.1214/20-BA1221.
Wang, S., J. Cao, and S. Y. Philip (2020). Deep learning for spatio-temporal data mining: A survey. IEEE Transactions on Knowledge and Data Engineering 34, 3681–3700. doi: 10.1109/TKDE.2020.3025580.
Wang, Y., Y. Zheng, and Y. Xue (2014). Travel time estimation of a path using sparse trajectories. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York New York USA: ACM, 25–34. doi: 10.1145/2623330.2623656.
Wu, Z., S. Pan, F. Chen, G. Long, et al. (2021). A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems 32, 4–24. doi: 10.1109/TNNLS.2020.2978386.
Yu, G. and X. Qi (2004). Disruption Management: Framework, Models and Applications. World Scientific. doi: 10.1142/5632.
Zhan, X., S. Hasan, S. V. Ukkusuri, and C. Kamga (2013). Urban link travel time estimation using large-scale taxi data with partial information. Transportation Research Part C: Emerging Technologies 33, 37–49. doi: 10.1016/j.trc.2013.04.001.
Zheng, F. and H. Van Zuylen (2013). Urban link travel time estimation based on sparse probe vehicle data. Transportation Research Part C: Emerging Technologies 31, 145–157. doi: 10.1016/j.trc.2012.04.007.
Zöller, M.-A., F. Mauthe, P. Zeiler, M. Lindauer, et al. (2023). Automated Machine Learning for Remaining Useful Life Predictions. arXiv: 2306.12215.