To content
C01

Energy price shocks: identification, transmission, and induced technological change

C01 investigates strategies using structural vector autoregressive (SVAR)-type models for the identification and estimation of the impulse responses of energy price shocks from macroeconomic and sectoral time series. It analyzes whether higher energy prices speed up the development of energy-saving technologies. In the long run, the project develops methodologies for non-stationary and mixed-frequency data as well as novel identification strategies for SVARs with functional anticipated energy prices.

Project Leaders

Prof. Dr. Christoph Hanck
Faculty of Business and Economics - Chair of Econometrics
University of Duisburg-Essen

Prof. Dr. Carsten Jentsch
Department of Statistics - Chair of Business and Social Statistics
TU Dortmund University

Prof. Dr. Ludger Linnemann
Department of Business and Economics - Chair of Applied Economics
TU Dortmund University

Summary

The transition to a decarbonized economy will likely result in increased energy prices for maybe decades, until renewable energies will be available at a scale sufficient for a full transition. By taking spatial/regional information into account, we identify and estimate the macroeconomic effects of energy price shocks from aggregate multi-country and multi-sector time series data. This requires a solution to a fundamental identification problem: since energy prices also respond endogenously to variations in energy demand (e.g., due to the state of the business cycle), a causal analysis of the effects of energy prices requires the identification of truly exogenous supply side energy price shocks.

A large macroeconometric literature attempts to estimate the effects of oil price shocks, but often relies on debatable identification assumptions such as recursiveness. We develop new statistical identification procedures to causally estimate the effects of oil price shocks. Oil prices have the advantage that they are readily available as long time series at high frequencies, and they are highly correlated with the costs of other sources of energy. By leveraging the panel dimension of macroeconomic data, our goal is to make explicit use of spatial information via, e.g., country-specific shocks and transmission mechanisms to develop various new statistical identification procedures (based on, e.g., higher moments, volatility processes, or generative adversarial networks) to causally estimate the effects of oil price shocks, including accounting for, e.g., mixed frequencies. Further, we derive broader measures of energy costs and usage and will thus be able to identify and estimate the impact of energy cost shocks on aggregate output, employment and prices as well as the induced substitution between production factors and broader energy sources. We also produce novel estimates of the causal effects of energy price shocks on energy-saving technological progress, which is the key metric for the assessment of the overall macroeconomic cost of decarbonisation.

To assess estimation uncertainty associated with these identification strategies, we develop asymptotic distribution theory for the (parameter) estimates that enables the construction of valid confidence intervals for impulse response analysis. To improve the finite sample performance and to address the problem of estimating the usually large number of nuisance parameters in limiting distributions, we construct suitable resampling schemes making use of (residual-based) block bootstrap as well as multiplier bootstrap strategies. Suitably applied, these inferential procedures will be capable of handling typical data features such as temporal and spatial dependence in the panel, heteroskedasticity, mixed frequencies as well as non-stationarities. We also leverage the panel dimension typically available and make use of shrinkage approaches to reduce the typically large number of parameters in order to improve estimation accuracy.

Aastveit, K. A., C. Foroni, and F. Ravazzolo (2017). Density forecasts with MIDAS models. Journal of Applied Econometrics 32, 783–801. doi: 10.1002/jae.2545.

Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous (2012). The environment and directed technical change. Economic Economic Review 102, 131–166. doi: 10.1257/aer.102.1.131.

Aghion, P., A. Dechezleprêtre, D. Hemous, R. Martin, et al. (2016). Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. Journal of Political Economy 124, 1–51. doi: 10.1086/684581.

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817–858. doi: 10.2307/2938229.

Angelini, G., G. Cavaliere, and L. Fanelli (2024). An identification and testing strategy for proxy-SVARs with weak proxies. Journal of Econometrics 238, 105604. doi: 10.1016/j.jeconom.2023.105604.

Antolín-Díaz, J. and J. F. Rubio-Ramírez (2018). Narrative Sign Restrictions for SVARs. American Economic Review 108, 2802–2829. doi: 10.1257/aer.20161852.

Arias, J. E., J. F. Rubio-Ramírez, and D. F. Waggoner (2021). Inference in Bayesian Proxy-SVARs. Journal of Econometrics 225, 88–106. doi: 10.1016/j.jeconom.2020.12.004.

Arsova, A. and D. D. K. Örsal (2018). Likelihood-based panel cointegration test in the presence of a linear time trend and cross-sectional dependence. Econometric Reviews 37, 1033–1050. doi: 10.1080/07474938.2016.1183070.

Bachmann, R., D. Baqaee, C. Bayer, M. Kuhn, et al. (2024). What if? The Economic Effects for Germany of a Stop of Energy Imports from Russia. doi: 10.1111/ecca.12546.

Bai, J. (2003). Inferential Theory for Factor Models of Large Dimensions. Econometrica 71, 135–171. doi: 10.1111/1468-0262.00392.

Baltagi, B. H. (2021). Econometric Analysis of Panel Data. 6th ed. Springer. doi: 10.1007/978-3-030-53953-5.

Baqaee, D. R. and E. Farhi (2018). Macroeconomics with Heterogeneous Agents and Input-Output Networks, w24684. doi: 10.3386/w24684.

Baumeister, C. and J. D. Hamilton (2019). Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks. American Economic Review 109, 1873–1910. doi: 10.1257/aer.20151569.

Bennett, A., N. Kallus, and T. Schnabel (2019). Deep Generalized Method of Moments for Instrumental Variable Analysis. Proceedings of the 33rd International Conference on Neural Information Processing Systems. doi: 10.5555/3454287.3454607.

Boswijk, H. P., G. Cavaliere, I. Georgiev, and A. Rahbek (2021). Bootstrapping non-stationary stochastic volatility. Journal of Econometrics 224, 161–180. doi: 10.1016/j.jeconom.2021.01.005.

Braun, R. (2023). The importance of supply and demand for oil prices: Evidence from non-Gaussianity. Quantitative Economics. doi: 10.2139/ssrn.4013904.

Brüggemann, R., C. Jentsch, and C. Trenkler (2016). Inference in VARs with conditional heteroskedasticity of unknown form. Journal of Econometrics 191, 69–85. doi: 10.1016/j.jeconom.2015.10.004.

Bruns, M. and H. L. C. Econ (2022) (2022). An Alternative Bootstrap for Proxy Vector Autoregressions. Computational Economics. doi: 10.1007/s10614-022-10323-w.

Bruns, M. and H. Lütkepohl (2022). Comparison of local projection estimators for proxy vector autoregressions. Journal of Economic Dynamics and Control 134, 104277. doi: 10.1016/j.jedc.2021.104277.

Bruns, M. and M. Piffer (2023). A new posterior sampler for Bayesian structural vector autoregressive models. Quantitative Economics. doi: 10.3982/QE2207.

Caldara, D., M. Cavallo, and M. Iacoviello (2019). Oil price elasticities and oil price fluctuations. Journal of Monetary Economics 103, 1–20. doi: 10.1016/j.jmoneco.2018.08.004.

Camehl, A. (2023). Penalized estimation of panel vector autoregressive models: A panel LASSO approach. International Journal of Forecasting 39, 1185–1204. doi: 10.1016/j.ijforecast.2022.05.007.

Carriero, A., M. G. Marcellino, and T. Tornese (2023). Blended identification in structural vars. BAFFI CAREFIN Centre Research Paper. doi: 10.2139/ssrn.4404761.

Cavaliere, G., S. Gonçalves, M. Ø. Nielsen, and E. Zanelli (2023). Bootstrap Inference in the Presence of Bias. Journal of the American Statistical Association, 1–26. doi: 10.1080/01621459.2023.2284980.

Chan, J., E. Eisenstat, and X. Yu (2022). Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis.

Chandra, S. R. and H. Al-Deek (2009). Predictions of Freeway Traffic Speeds and Volumes Using Vector Autoregressive Models. Journal of Intelligent Transportation Systems 13, 53–72. doi: 10.1080/15472450902858368.

Cheng, X. and Z. Liao (2015). Select the valid and relevant moments: An information-based LASSO for GMM with many moments. Journal of Econometrics 186, 443–464. doi: 10.1016/j.jeconom.2015.02.019.

Cigliutti, I. and E. Manresa (2022). Adversarial Method of Moments. url: https://www.nachocigliutti.com/uploads/AMM_draft.pdf.

De Loecker, J., J. Eeckhout, and G. Unger (2020). The rise of market power and the macroeconomic implications. The Quarterly Journal of Economics 135, 561–644. doi: 10.1093/qje/qjz041.

Degasperi, R. (2021). Identification of Expectational Shocks in the Oil Market using OPEC Announcements. Manuscript, University of Warwick. url: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/2023/twerp_1464_-_degasperi.pdf.

Demetrescu, M. and C. Hanck (2012). Unit Root Testing in Heteroscedastic Panels Using the Cauchy Estimator. Journal of Business & Economic Statistics 30, 256–264. doi: 10.1080/07350015.2011.638839.

Demetrescu, M. and C. Hanck (2018). Multiple Testing for No Cointegration under Nonstationary Volatility. Oxford Bulletin of Economics and Statistics 80, 485–513. doi: 10.1111/obes.12214.

Demetrescu, M., C. Hanck, and R. Kruse-Becher (2023). Robust Fixed- b Inference in the Presence of Time-Varying Volatility. Econometrics and Statistics, S2452306223000357. doi: 10.1016/j.ecosta.2023.05.003.

Demetrescu, M., C. Hanck, and R. Kruse-Becher (2022). Robust inference under time-varying volatility: A real-time evaluation of professional forecasters. Journal of Applied Econometrics 37, 1010–1030. doi: 10.1002/jae.2906.

Dikkala, N., G. Lewis, L. Mackey, and V. Syrgkanis (2020). Minimax Estimation of Conditional Moment Models. Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS20, 12248–12262. doi: 10.48550/arXiv.2006.07201.

Dorn, M., M. Birke, and C. Jentsch (2022). Testing exogeneity in the functional linear regression model. url: http://arxiv.org/abs/2208.06842.

Drautzburg, T. and J. H. Wright (2023). Refining set-identification in vars through independence. Journal of Econometrics. doi: 10.1016/j.jeconom.2023.01.011.

Eraker, B., C. W. Chiu, A. T. Foerster, T. B. Kim, et al. (2015). Bayesian Mixed Frequency VARs. Journal of Financial Econometrics 13, 698–721. doi: 10.1093/jjfinec/nbu027.

Feng, M., X. Wang, and M. Quddus (2020). Developing multivariate time series models to examine the interrelations between police enforcement, traffic violations, and traffic crashes. Analytic Methods in Accident Research 28, 100139. doi: 10.1016/j.amar.2020.100139.

Fernald, J. G. (2014). A Quarterly, Utilization-Adjusted Series on Total Factor Productivity. Federal Reserve Bank of San Francisco Working Paper 2012-19. doi: 10.24148/wp2012-19.

Forni, M., L. Gambetti, M. Marco, and L. Sala (2020). Common component structural VARs. CEPR Press Discussion Paper 15529. url: https://cepr.org/publications/dp15529.

Foroni, C. and M. Marcellino (2016). Mixed Frequency Structural Vector Auto-Regressive Models. Journal of the Royal Statistical Society Series A: Statistics in Society 179, 403–425. doi: 10.1111/rssa.12120.

Fried, S. (2018). Climate Policy and Innovation: A Quantitative Macroeconomic Analysis. American Economic Journal: Macroeconomics 10, 90–118. doi: 10.1257/mac.20150289.

Gabaix, X. and R. S. J. Koijen (n.d.). Granular Instrumental Variables (). doi: 10.3386/w28204.

Ghysels, E., J. B. Hill, and K. Motegi (2016). Testing for Granger causality with mixed frequency data. Journal of Econometrics 192, 207–230. doi: 10.1016/j.jeconom.2015.07.007.

Gold, D., J. Lederer, and J. Tao (2020). Inference for high-dimensional instrumental variables regression. Journal of Econometrics 217, 79–111. doi: 10.1016/j.jeconom.2019.09.009.

Gonçalves, S. and B. Perron (2020). Bootstrapping factor models with cross sectional dependence. Journal of Econometrics 218, 476–495. doi: 10.1016/j.jeconom.2020.04.026.

Götz, T. B., A. Hecq, and S. Smeekes (2016). Testing for Granger causality in large mixed-frequency VARs. Journal of Econometrics 193, 418–432. doi: 10.1016/j.jeconom.2016.04.015.

Gouriéroux, C., A. Monfort, and J.-P. Renne (2017). Statistical inference for independent component analysis: Application to structural VAR models. Journal of Econometrics 196, 111–126. doi: 10.1016/j.jeconom.2016.09.007.

Hanck, C. (2008). The Error-in-Rejection Probability of Meta Analytic Panel Tests. Economics Letters 101, 27–30. doi: 10.1016/j.econlet.2008.03.029.

Hanck, C. and J. Prüser (2020). House Prices and Interest Rates — Bayesian Evidence from Germany. Applied Economics 52, 3073–3089. doi: 10.1080/00036846.2019.1705242.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 1029–1054. doi: 10.2307/1912775.

Härtl, T. (2022). Identifying Proxy VARs with Restrictions on the Forecast Error Variance. GSBS Working Paper 2022.1.

Hassler, J., P. Krusell, and C. Olovsson (2021). Directed technical change as a response to natural resource scarcity. Journal of Political Economy 129, 3039–3072. doi: 10.1086/715849.

Herwartz, H., A. Lange, and S. Maxand (2022). Data-driven identification in SVARs—When and how can statistical characteristics be used to unravel causal relationships? Economic Inquiry 60, 668–693. doi: 10.1111/ecin.13035.

Holtz-Eakin, D., W. Newey, and H. S. Rosen (1988). Estimating Vector Autoregressions with Panel Data. Econometrica 56, 1371–1395. doi: 10.2307/1913103.

Inoue, A. and B. Rossi (2021). A new approach to measuring economic policy shocks, with an application to conventional and unconventional monetary policy. Quantitative Economics 12, 1085–1138. doi: 10.3982/QE1225.

Jarociński, M. and P. Karadi (2020). Deconstructing Monetary Policy Surprises — The Role of Information Shocks. American Economic Journal: Macroeconomics 12, 1–43. doi: 10.1257/mac.20180090.

Jentsch, C. and K. G. Lunsford (2019). The dynamic effects of personal and corporate income tax changes in the United States: Comment. American Economic Review 109, 2655–2678. doi: 10.1257/aer.20162011.

Jentsch, C. and K. G. Lunsford (2022). Asymptotically Valid Bootstrap Inference for Proxy SVARs. Journal of Business & Economic Statistics 40, 1876–1891. doi: 10.1080/07350015.2021.1990770.

Jentsch, C., D. N. Politis, and E. Paparoditis (2015). Block Bootstrap Theory for Multivariate Integrated and Cointegrated Processes. Journal of Time Series Analysis 36, 416–441. doi: 10.1111/jtsa.12088.

Känzig, D. R. and M. Konradt (2023). Climate Policy and the Economy: Evidence from Europe’s Carbon Pricing Initiatives. NBER Working Paper. doi: 10.3386/w31260.

Känzig, D. R. (2021). The Macroeconomic Effects of Oil Supply News: Evidence from OPEC Announcements. American Economic Review 111, 1092–1125. doi: 10.1257/aer.20190964.

Keweloh, S. (2021a). A feasible approach to incorporate information in higher moments in structural vector autoregressions. SFB 823 Discussion Paper. doi: 10.17877/DE290R-22416.

Keweloh, S. (2021b). A Generalized Method of Moments Estimator for Structural Vector Autoregressions Based on Higher Moments. Journal of Business & Economic Statistics 39, 772–782. doi: 10.1080/07350015.2020.1730858.

Keweloh, S. (2023). Uncertain Prior Economic Knowledge and Statistically Identified Structural Vector Autoregressions.

Keweloh, S. A., M. Klein, and J. Prüser (2023). Estimating the Effects of Fiscal Policy using a Novel Proxy Shrinkage Prior.

Keweloh, S. A. and S. Hetzenecker (2021). Efficiency gains in structural vector autoregressions by selecting informative higher-order moment conditions. doi: 10.17877/DE290R-22447.

Keweloh, S. A., S. Hetzenecker, and A. Seepe (2021). Block-recursive non-Gaussian structural vector autoregressions. doi: 10.17877/DE290R-22417.

Keweloh, S. A. and A. Seepe (2020). Monetary policy and the stock market — A partly recursive SVAR estimator.

Kiefer, N. M. and T. J. Vogelsang (2005). A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econometric Theory 21, 1130–1164. doi: 10.1017/S0266466605050565.

Kilian, L. (2009). Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review 99, 1053–1069. doi: 10.1257/aer.99.3.1053.

Kilian, L. (2014). Oil Price Shocks: Causes and Consequences. Annual Review of Resource Economics 6, 133–154. doi: 10.1146/annurev-resource-083013-114701.

Kilian, L. and X. Zhou (2018). Modeling fluctuations in the global demand for commodities. Journal of International Money and Finance 88, 54–78. doi: 10.1016/j.jimonfin.2018.07.001.

Kilian, L. and X. Zhou (2022). Oil prices, exchange rates and interest rates. Journal of International Money and Finance 126, 102679. doi: 10.1016/j.jimonfin.2022.102679.

Kilian Lutzand Zhou, X. (2023). The Econometrics of Oil Market VAR Models. Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications. Vol. 45B, 65–95. doi: 10.1108/S0731-90532023000045B003.

Klein, M. and L. Linnemann (2019a). Macroeconomic Effects of Government Spending: The Great Recession was (Really) Different. Journal of Money, Credit and Banking 51, 1237–1264. doi: 10.1111/jmcb.12558.

Klein, M. and L. Linnemann (2019b). Tax and spending shocks in the open economy: Are the deficits twins? European Economic Review 120, 103300. doi: 10.1016/j.euroecorev.2019.103300.

Klein, M. and L. Linnemann (2021). Real exchange rate and international spillover effects of US technology shocks. Journal of International Economics 129, 103414. doi: 10.1016/j.jinteco.2020.103414.

Klein, M. and L. Linnemann (2023). The composition of public spending and the inflationary effects of fiscal policy shocks. European Economic Review 155, 104460. doi: 10.1016/j.euroecorev.2023.104460.

Koop, G. and D. Korobilis (2013). Large time-varying parameter VARs. Journal of Econometrics 177, 185–198. doi: 10.1016/j.jeconom.2013.04.007.

Korobilis, D. (2022). A new algorithm for structural restrictions in Bayesian vector autoregressions. European Economic Review 148, 104241. doi: 10.1016/j.euroecorev.2022.104241.

Kurisu, D., K. Kato, and X. Shao (2023). Gaussian approximation and spatially dependent wild bootstrap for high-dimensional spatial data. Journal of the American Statistical Association, 1–21. doi: 10.1080/01621459.2023.2218578.

Lanne, M., K. Liu, and J. Luoto (2021). Identifying structural vector autoregression via large economic shocks. Available at SSRN 3910532. doi: 10.2139/ssrn.3910532.

Lanne, M., K. Liu, and J. Luoto (2022). Identifying Structural Vector Autoregression via Leptokurtic Economic Shocks. Journal of Business & Economic Statistics, 1–11. doi: 10.1080/07350015.2022.2134872.

Lanne, M. and J. Luoto (2020). Identification of economic shocks by inequality constraints in Bayesian structural vector autoregression. Oxford Bulletin of Economics and Statistics 82, 425–452. doi: 10.1111/obes.12338.

Lanne, M. and J. Luoto (2021). GMM Estimation of Non-Gaussian Structural Vector Autoregression. Journal of Business & Economic Statistics 39, 69–81. doi: 10.1080/07350015.2019.1629940.

Lanne, M., H. Lütkepohl, and K. Maciejowska (2010). Structural vector autoregressions with Markov switching. Journal of Economic Dynamics and Control 34, 121–131. doi: 10.1016/j.jedc.2009.08.002.

Lanne, M., M. Meitz, and P. Saikkonen (2017). Identification and estimation of non-Gaussian structural vector autoregressions. Journal of Econometrics 196, 288–304. doi: 10.1016/j.jeconom.2016.06.002.

León-Ledesma, M. A. and M. Satchi (2019). Appropriate technology and balanced growth. The Review of Economic Studies 86, 807–835. doi: 10.1093/restud/rdy002.

Lewis, D. J. (2019). Announcement-specific decompositions of unconventional monetary policy shocks and their macroeconomic effects. FRB of New York Staff Report. doi: 10.1162/rest_a_01315.

Lewis, D. J. (2021). Identifying shocks via time-varying volatility. The Review of Economic Studies 88, 3086–3124. doi: 10.1093/restud/rdab009.

Lütkepohl, H. and A. Netšunajev (2014). Disentangling demand and supply shocks in the crude oil market: How to check sign restrictions in structural VARs. Journal of Applied Econometrics 29, 479–496. doi: 10.1002/jae.2330.

Lütkepohl, H. and A. Netšunajev (2017). Structural vector autoregressions with heteroskedasticity: A review of different volatility models. Econometrics and statistics 1, 2–18. doi: 10.1016/j.ecosta.2016.05.001.

Lütkepohl, H. and T. Schlaak (2022). Heteroscedastic Proxy Vector Autoregressions. Journal of Business & Economic Statistics 40, 1268–1281. doi: 10.1080/07350015.2021.1920962.

Matteson, D. S. and R. S. Tsay (2017). Independent Component Analysis via Distance Covariance. Journal of the American Statistical Association 112, 623–637. doi: 10.1080/01621459.2016.1150851.

Mertens, K. and M. O. Ravn (2013). The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States. American Economic Review 103, 1212–1247. doi: 10.1257/aer.103.4.1212.

Metcalf, G. E. and J. H. Stock (2020). Measuring the Macroeconomic Impact of Carbon Taxes. AEA Papers and Proceedings 110, 101–06. doi: 10.1257/pandp.20201081.

Metcalf, G. E. and J. H. Stock (2023). The Macroeconomic Impact of Europe’s Carbon Taxes. American Economic Journal: Macroeconomics 15, 265–286. doi: 10.1257/mac.20210052.

Mikusheva, A. and L. Sun (2022). Inference with Many Weak Instruments. The Review of Economic Studies 89, 2663–2686. doi: 10.1093/restud/rdab097.

Montiel Olea, J. L., M. Plagborg-Møller, and E. Qian (2022). SVAR Identification from Higher Moments: Has the Simultaneous Causality Problem Been Solved? AEA Papers and Proceedings 112, 481–485. doi: 10.1257/pandp.20221047.

Mumtaz, H. and K. Petrova (2023). Changing Impact of Shocks: A Time-Varying Proxy SVAR Approach. Journal of Money, Credit and Banking 55, 635–654. doi: 10.1111/jmcb.12946.

Newey, W. K. and F. Windmeijer (2009). Generalized method of moments with many weak moment conditions. Econometrica 77, 687–719. doi: 10.3982/ECTA6224.

Olea, J. L. M., J. H. Stock, and M. W. Watson (2021). Inference in Structural Vector Autoregressions identified with an external instrument. Journal of Econometrics 225, 74–87. doi: 10.1016/j.jeconom.2020.05.014.

Palm, F. C., S. Smeekes, and J.-P. Urbain (2011). Cross-sectional dependence robust block bootstrap panel unit root tests. Journal of Econometrics 163, 85–104. doi: 10.1016/j.jeconom.2010.11.010.

Paparoditis, E. and D. N. Politis (2003). Residual-Based Block Bootstrap for Unit Root Testing. Econometrica 71, 813–855. doi: 10.1111/1468-0262.00427.

Paul, P. (2020). The time-varying effect of monetary policy on asset prices. Review of Economics and Statistics 102, 690–704. doi: 10.1162/rest_a_00840.

Pedroni, P. (2013). Structural Panel VARs. Econometrics 1, 180–206. doi: 10.3390/econometrics1020180.

Prüser, J. and C. Hanck (2021). A Comparison of Approaches to Select the Informativeness of Priors in BVARs. Jahrbücher für Nationalökonomie und Statistik 241, 501–525. doi: 10.1515/jbnst-2020-0050.

Reichold, K. and C. Jentsch (2023). Bootstrap inference in cointegrating regressions: Traditional and self-normalized test statistics. Journal of Business & Economic Statistics, 1–97. doi: 10.1080/07350015.2023.2271538.

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics 85, 777–792. doi: 10.1162/003465303772815727.

Schlaak, T., M. Rieth, and M. Podstawski (2023). Monetary policy, external instruments, and heteroskedasticity. Quantitative Economics 14, 161–200. doi: 10.3982/QE1511.

Seong, D. and W.-K. Seo (2022). Functional instrumental variable regression with an application to estimating the impact of immigration on native wages. url: http://arxiv.org/abs/2110.12722.

Shao, X. (2015). Self-Normalization for Time Series: A Review of Recent Developments. Journal of the American Statistical Association 110, 1797–1817. doi: 10.1080/01621459.2015.1050493.

Sims, C. (1980). Macroeconomics and Reality. Econometrica 48, 1–48. doi: 10.2307/1912017.

Stock, J. H. and M. W. Watson (2012). Disentangling the Channels of the 2007–2009 Recession. Brookings Papers on Economic Activity 43, 81–156. doi: 10.3386/w18094.

Stock, J. H. and M. W. Watson (2016). Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics. Handbook of Macroeconomics. Vol. 2, 415–525. doi: 10.1016/bs.hesmac.2016.04.002.

Stock, J. H. and M. W. Watson (2002). Has the Business Cycle Changed and Why? NBER Macroeconomics Annual 17, 159–218. doi: 10.3386/w9127.

Stock, J. H., J. H. Wright, and M. Yogo (2002). A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments. Journal of Business & Economic Statistics 20, 518–529. doi: 10.1198/073500102288618658.

Tank, A., E. B. Fox, and A. Shojaie (2019). Identifiability and estimation of structural vector autoregressive models for subsampled and mixed-frequency time series. Biometrika 106, 433–452. doi: 10.1093/biomet/asz007.