To content
C02

Renewable energy forecasts and their impact on electricity prices

C02 aims for more reliable probabilistic wind and solar power forecasts to improve supply security by renewable energies. The impact of renewable energy forecasts on electricity prices will be analyzed, taking cross-country effects in interconnected and coupled electricity markets in Europe into account. In the long run, methodologies for probabilistic deep learning structures and online learning algorithms will be put forward to forecast electric load and (battery) storage.

Project Leaders

JProf. Dr. Antonia Arsova
Department of Statistics - Chair of Econometrics
TU Dortmund University

JProf. Dr. Florian Ziel
Faculty of Business and Economics - Chair of Environmental Economics, esp. Economics of Renewable Energy
University of Duisburg-Essen

Summary

We will develop models to improve probabilistic wind and solar power forecasts and study their impact on electricity prices in a European context. Solar and wind power forecasting are two of the four major areas of energy forecasting (with electric load and electricity price forecasting being the other two), as they are highly relevant for power system operations and short-term portfolio management.

In particular, we will establish new high-dimensional time series models that adequately take into account the spatio-temporal structure of the underlying renewable energy supply data. Describing their full predictive distribution in space and time, these models will allow for the simulation of trajectories. The problem of forecasting these multivariate time series will be tackled by separately modeling the marginal distribution of each series and the dependence structure between them, which will be captured  by a suitable copula. For the marginal distribution, we will follow a regularized GAMLSS (Generalized Additive Models for Location, Scale and Shape) framework which allows for flexible modeling of nonlinearities in the data. In addition, we will  develop multi-level  models for hierarchical forecasting that are scalable in high dimensions. These models will incorporate relevant information on different hierarchical levels concerning the spatial and temporal dimensions of the data, which enables coherent and more accurate forecasts at each level.

We employ this framework for forecasting wind and solar power at different aggregation levels to analyze the electricity markets in more detail. More precisely, we study the impact of renewable energy forecasts on electricity prices using modern econometric tools, such as advanced cointegration methods. The availability of a fully probabilistic modeling framework allows for a detailed analysis of the price reducing impact of renewable energies, also known as the merit-order effect. This information is valuable from the operational side, e.g., concerning storage and grid optimization, but also influences the subsidy schemes for some renewable energy producers. We put special focus on the quantification of nonlinear relationships, particularly on negative and positive price spikes that occur especially in situations of over- and undersupply. In this context, GAMLSS techniques allow again for an adequate modeling and, hence, for analyzing the differences in the price impacts of wind and solar power. Given increasingly interconnected and coupled European electricity markets, accounting for  underlying cointegrating relationships, we study in detail cross-country effects of renewables on market integration. In addition to renewable energy and load forecasts in the considered markets, we consider the impact of related commodity prices in the price formation of electricity, especially of European emission allowances and conventional energy fuels like natural gas, coal and oil. We also introduce measures for monitoring the progress of European market coupling to allow for an adequate analysis of their relationships using multivariate price models.

Alasseur, C. and O. Féron (2018). Structural price model for coupled electricity markets. Energy Economics 75, 104–119. doi: 10.1016/j.eneco.2018.07.018.

Albahri, A., A. M. Duhaim, M. A. Fadhel, A. Alnoor, et al. (2023). A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion. doi: 10.1016/j.inffus.2023.03.008.

Ambach, D. and W. Schmid (2017). A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting. Energy 135, 833–850. doi: 10.1016/j.energy.2017.06.137.

Arsova, A. and D. D. K. Örsal (2018). Likelihood-based panel cointegration test in the presence of a linear time trend and cross-sectional dependence. Econometric Reviews 37, 1033–1050. doi: 10.1080/07474938.2016.1183070.

Arsova, A. and D. D. K. Örsal (2019). Intersection tests for the cointegrating rank in dependent panel data. Communication in Statistics — Simulation and Computation 49, 918–941. doi: 10.1080/03610918.2018.1489552.

Arsova, A. and D. D. K. Örsal (2021). A panel cointegrating rank test with structural breaks and cross-sectional dependence. Econometrics and Statistics 17, 107–129. doi: 10.1016/j.ecosta.2020.05.002.

Athanasopoulos, G., P. Gamakumara, A. Panagiotelis, R. J. Hyndman, et al. (2020). Hierarchical Forecasting. Macroeconomic Forecasting in the Era of Big Data. Ed. by P. Fuleky. Advanced Studies in Theoretical and Applied Econometrics. Springer, 689–719. doi: 10.1007/978-3-030-31150-6_21.

Berrisch, J., S. Pappert, F. Ziel, and A. Arsova (2023). Modeling Volatility and Dependence of European Carbon and Energy Prices. Finance Research Letters 52, 103503. doi: 10.1016/j.frl.2022.103503.

Berrisch, J. and F. Ziel (2023). CRPS learning. Journal of Econometrics 237, 105221. doi: 10.1016/j.jeconom.2021.11.008.

Bierens, H. J. and L. F. Martins (2010). Time-varying Cointegration. Econometric Theory 26, 1453–1490. doi: 10.1017/S0266466609990648.

Browell, J., C. Gilbert, and M. Fasiolo (2022). Covariance structures for high-dimensional energy forecasting. Electric Power Systems Research 211, 108446. doi: 10.1016/j.epsr.2022.108446.

Casaleiro, Â., N. P. Da Silva, N. S. e Silva, R. Cartaxo, et al. (2022). Analysis of the European day-ahead electricity market coupling mechanism: Discussion, modeling, and simulation. 2022 18th International Conference on the European Energy Market (EEM). IEEE, 1–8. doi: 10.1109/EEM54602.2022.9921079.

Ciferri, D., M. D’Errico, and P. Polinori (2020). Integration and convergence in European electricity markets. Economia Politica 37, 463–492. doi: 10.1007/s40888-019-00163-7.

Corona, L., A. Mochon, and Y. Saez (2022). Electricity market integration and impact of renewable energy sources in the Central Western Europe region: Evolution since the implementation of the Flow-Based Market Coupling mechanism. Energy Reports 8, 1768–1788. doi: 10.1016/j.egyr.2021.12.077.

de Menezes, L. M., M. A. Houllier, and M. Tamvakis (2016). Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices. Energy Policy 88, 613–627. doi: 10.1016/j.enpol.2015.09.008.

Demetrescu, M. and C. Hanck (2018). Multiple Testing for No Cointegration under Nonstationary Volatility. Oxford Bulletin of Economics and Statistics 80, 485–513. doi: 10.1111/obes.12214.

Di Fonzo, T. and D. Girolimetto (2023). Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives. International Journal of Forecasting 39, 39–57. doi: 10.1016/j.ijforecast.2021.08.004.

Ghelasi, P. and F. Ziel (2022). Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions. International Journal of Forecasting. doi: 10.1016/j.ijforecast.2022.11.004.

Ghysels, E., V. Kvedaras, and V. Zemlys-Balevičius (2020). Mixed data sampling (MIDAS) regression models. Handbook of Statistics. Vol. 42. Elsevier, 117–153. doi: 10.1016/bs.host.2019.01.005.

Giebel, G. and G. Kariniotakis (2017). Wind power forecasting—a review of the state of the art. Renewable Energy Forecasting. Elsevier, 59–109. doi: 10.1016/B978-0-08-100504-0.00003-2.

Gilbert, C., J. Browell, and D. McMillan (2021). Probabilistic access forecasting for improved offshore operations. International Journal of Forecasting 37, 134–150. doi: 10.1016/j.ijforecast.2020.03.007.

Gneiting, T. and A. E. Raftery (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American statistical Association 102, 359–378. doi: 10.1198/016214506000001437.

González, J. P., A. M. S. M. San Roque, and E. A. Perez (2017). Forecasting functional time series with a new Hilbertian ARMAX model: Application to electricity price forecasting. IEEE Transactions on Power Systems 33, 545–556. doi: 10.1109/TPWRS.2017.2700287.

González Ordiano, J. Á., L. Gröll, R. Mikut, and V. Hagenmeyer (2020). Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression. International Journal of Forecasting 36, 310–323. doi: 10.1016/j.ijforecast.2019.06.003.

Gugler, K., A. Haxhimusa, and M. Liebensteiner (2018). Integration of European Electricity Markets: Evidence from Spot Prices. The Energy Journal 39, 97–116. doi: 10.5547/01956574.39.SI2.kgug.

Gürtler, M. and T. Paulsen (2018). The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany. Energy Economics 75, 150–162. doi: 10.1016/j.eneco.2018.07.006.

Haq, M. R. and Z. Ni (2019). A new hybrid model for short-term electricity load forecasting. IEEE access 7, 125413–125423. doi: 10.1109/ACCESS.2019.2937222.

Hellwig, M., D. Schober, and O. Woll (2020). Measuring market integration and estimating policy impacts on the Swiss electricity market. Energy Economics 86, 104637. doi: 10.1016/j.eneco.2019.104637.

Hong, T., P. Pinson, Y. Wang, R. Weron, et al. (2020). Energy Forecasting: A Review and Outlook. IEEE Open Access Journal of Power and Energy 7, 376–388. doi: 10.1109/OAJPE.2020.3029979.

Hubicka, K., G. Marcjasz, and R. Weron (2018). A note on averaging day-ahead electricity price forecasts across calibration windows. IEEE Transactions on Sustainable Energy 10, 321–323. doi: 10.1016/j.apenergy.2021.116983.

Kapetanios, G., S. Millard, K. Petrova, and S. Price (2020). Time-varying cointegration with an application to the UK Great Ratios. Economics Letters 193, 109213. doi: 10.1016/j.econlet.2020.109213.

Krupskii, P. and M. G. Genton (2017). Factor copula models for data with spatio-temporal dependence. Spatial Statistics 22, 180–195. doi: 10.1016/j.spasta.2017.10.001.

Krupskii, P. and M. G. Genton (2018). Linear factor copula models and their properties. Scandinavian Journal of Statistics 45, 861–878. doi: 10.1111/sjos.12325.

Kulakov, S. and F. Ziel (2021). The Impact of Renewable Energy Forecasts on Intraday Electricity Prices. Economics of Energy & Environmental Policy 10. doi: 10.5547/2160-5890.10.1.skul.

Lahiani, A., A. Miloudi, R. Benkraiem, and M. Shahbaz (2017). Another look on the relationships between oil prices and energy prices. Energy Policy 102, 318–331. doi: 10.1016/j.enpol.2016.12.031.

Liebl, D. (2013). Modeling and forecasting electricity spot prices: A functional data perspective. The Annals of Applied Statistics, 1562–1592. doi: 10.1214/13-AOAS652.

Marcjasz, G., M. Narajewski, R. Weron, and F. Ziel (2023). Distributional neural networks for electricity price forecasting. Energy Economics 125, 106843. doi: 10.1016/j.eneco.2023.106843.

Messner, J. W. and P. Pinson (2019). Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting. International Journal of Forecasting 35, 1485–1498. doi: 10.1016/j.ijforecast.2018.02.001.

Muniain, P. and F. Ziel (2020). Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices. International Journal of Forecasting 36, 1193–1210. doi: 10.1016/j.ijforecast.2019.11.006.

Naemi, M. and M. J. Brear (2020). A hierarchical, physical and data-driven approach to wind farm modelling. Renewable Energy 162, 1195–1207. doi: 10.1016/j.renene.2020.07.114.

Narajewski, M. and F. Ziel (2020). Ensemble forecasting for intraday electricity prices: Simulating trajectories. Applied Energy 279, 115801. doi: 10.1016/j.apenergy.2020.115801.

Narajewski, M. and F. Ziel (2022). Optimal bidding in hourly and quarter-hourly electricity price auctions: Trading large volumes of power with market impact and transaction costs. Energy Economics 110, 105974. doi: 10.1016/j.eneco.2022.105974.

Nystrup, P., E. Lindström, P. Pinson, and H. Madsen (2020). Temporal hierarchies with autocorrelation for load forecasting. European Journal of Operational Research 280, 876–888. doi: 10.1016/j.ejor.2019.07.061.

Örsal, D. D. K. and A. Arsova (2017). Meta-analytic cointegrating rank tests for dependent panels. Econometrics and Statistics 2, 61–72. doi: 10.1016/j.ecosta.2016.10.001.

Pappert, S. and A. Arsova (2023). Forecasting Natural Gas Prices with Spatio-Temporal Copula-Based Time Series Models. Theory and Applications of Time Series Analysis. Ed. by O. Valenzuela, F. Rojas, L. J. Herrera, H. Pomares, et al. Cham: Springer Nature Switzerland, 221–236. doi: 10.1007/978-3-031-40209-8_15.

Parisio, L. and M. Pelagatti (2019). Market coupling between electricity markets: theory and empirical evidence for the Italian–Slovenian interconnection. Economia Politica 36, 527–548. doi: 10.1007/s40888-018-0126-2.

Petropoulos, F., D. Apiletti, V. Assimakopoulos, M. Z. Babai, et al. (2022). Forecasting: theory and practice. International Journal of Forecasting 38, 705–871. doi: 10.1016/j.ijforecast.2021.11.001.

Pollitt, M. G. (2019). The European single market in electricity: An economic assessment. Review of Industrial Organization 55, 63–87. doi: 10.1007/s11151-019-09682-w.

Qian, Z., Y. Pei, H. Zareipour, and N. Chen (2019). A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Applied Energy 235, 939–953. doi: 10.1016/j.apenergy.2018.10.080.

Riepin, I., T. Möbius, and F. Müsgens (2021). Modelling uncertainty in coupled electricity and gas systems — Is it worth the effort? Applied Energy 285. doi: 10.1016/j.apenergy.2020.116363.

Schönheit, D., M. Kenis, L. Lorenz, D. Möst, et al. (2021). Toward a fundamental understanding of flow-based market coupling for cross-border electricity trading. Advances in Applied Energy 2, 100027. doi: 10.1016/j.adapen.2021.100027.

Seitaridis, M. I., N. S. Thomaidis, and P. N. Biskas (2021). Fundamental Responsiveness in European Electricity Prices. Energies 14. doi: 10.3390/en14227623.

Sgarlato, R. and F. Ziel (2022). The role of weather predictions in electricity price forecasting beyond the day-ahead horizon. IEEE Transactions on Power Systems 38, 2500–2511. doi: 10.1109/TPWRS.2022.3180119.

Sharma, N., R. Bhakar, and P. Jain (2023). Optimal reconciliation of hierarchical wind power forecasts of correlated wind farms. Sustainable Energy, Grids and Networks 35, 101091. doi: 10.1016/j.segan.2023.101091.

Sørensen, M. L., P. Nystrup, M. B. Bjerregård, J. K. Møller, et al. (2023). Recent developments in multivariate wind and solar power forecasting. Wiley Interdisciplinary Reviews: Energy and Environment 12. doi: 10.1002/wene.465.

Stasinopoulos, D. M. and R. A. Rigby (2008). Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software 23, 1–46. doi: 10.18637/jss.v023.i07.

Stasinopoulos, M. D., R. A. Rigby, G. Z. Heller, V. Voudouris, et al. (2017). Flexible regression and smoothing: Using GAMLSS in R. CRC Press. doi: 10.18637/jss.v085.b02.

Sun, S., Y. Liu, Q. Li, T. Wang, et al. (2023). Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks. Energy Conversion and Management 283, 116916. doi: 10.1016/j.enconman.2023.116916.

Taieb, S. B., J. W. Taylor, and R. J. Hyndman (2021). Hierarchical Probabilistic Forecasting of Electricity Demand With Smart Meter Data. Journal of the American Statistical Association 116, 27–43. doi: 10.1080/01621459.2020.1736081.

Tawn, R. and J. Browell (2022). A review of very short-term wind and solar power forecasting. Renewable and Sustainable Energy Reviews 153, 111758. doi: 10.1016/j.rser.2021.111758.

Tjøstheim, D. (2020). Some notes on nonlinear cointegration: A partial review with some novel perspectives. Econometric Reviews 39, 655–673. doi: 10.1080/07474938.2020.1771900.

Trashchenkov, S. and V. Astapov (2018). The applicability of zero inflated beta distributions for stochastic modeling of PV plants’ power output. 2018 19th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 1–6. doi: 10.1109/EPE.2018.8395965.

Trebbien, J., L. R. Gorjão, A. Praktiknjo, B. Schäfer, et al. (2022). Understanding electricity prices beyond the merit order principle using explainable AI. arXiv: 2212.04805.

Wang, Y., R. Zou, F. Liu, L. Zhang, et al. (2021). A review of wind speed and wind power forecasting with deep neural networks. Applied Energy 304, 117766. doi: 10.1016/j.apenergy.2021.117766.

Wickramasuriya, S. L. (2023). Probabilistic Forecast Reconciliation under the Gaussian Framework. Journal of Business & Economic Statistics, 1–14. doi: 10.1080/07350015.2023.2181176.

Xu, Y., Q. Dong, L. Li, Q. Zhang, et al. (2022). Very-Short-Term Wind Power Forecasting for New-Built Wind Farms Based on Online Sparse Vector Autoregressive Model. Annual Conference of China Electrotechnical Society. Springer, 148–158. doi: 10.1109/TSG.2015.2424078.

Yang, D. (2020). Choice of clear-sky model in solar forecasting. Journal of Renewable and Sustainable Energy 12, 026101. doi: 10.1063/5.0003495.

Yang, D., W. Wang, C. A. Gueymard, T. Hong, et al. (2022). A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable and Sustainable Energy Reviews 161, 112348. doi: 10.1016/j.rser.2022.112348.

Zhang, Y. and J. Dong (2018). Least Squares-based Optimal Reconciliation Method for Hierarchical Forecasts of Wind Power Generation. IEEE Transactions on Power Systems. doi: 10.1109/TPWRS.2018.2868175.

Ziel, F. (2022a). M5 competition uncertainty: Overdispersion, distributional forecasting, GAMLSS, and beyond. International Journal of Forecasting 38, 1546–1554. doi: 10.1016/j.ijforecast.2021.09.008.

Ziel, F. (2022b). Smoothed Bernstein online aggregation for short-term load forecasting in IEEE DataPort competition on day-ahead electricity demand forecasting: Post-COVID paradigm. IEEE Open Access Journal of Power and Energy 9, 202–212. doi: 10.1109/OAJPE.2022.3160933.

Ziel, F., C. Croonenbroeck, and D. Ambach (2016). Forecasting wind power — Modeling periodic and non-linear effects under conditional heteroscedasticity. Applied Energy 177, 285–297. doi: 10.1016/j.apenergy.2016.05.111.

Ziel, F. and R. Steinert (2018). Probabilistic mid-and long-term electricity price forecasting. Renewable and Sustainable Energy Reviews 94, 251–266. doi: 10.1016/j.rser.2018.05.038.